SELF-SIMILAR SOLUTIONS FOR THE MASSLESS VLASOV-EINSTEIN SYSTEM.

J. J. L. Velázquez.

ICMAT (CSIC-UAM-UC3M-UCM), Madrid.
Problem: Are there solutions of Einstein equations with suitable matter models exhibiting singularity formation without black hole formation?.

(Without horizon formation=Naked singularities).
Cosmic censorship hypothesis (Weak). (R. Penrose).
Einstein equations:

\[G_{\alpha\beta} \equiv R_{\alpha\beta} - \frac{1}{2} R g_{\alpha\beta} = 8\pi T_{\alpha\beta} \]

\[R_{\alpha\beta} = R^{\gamma}_{\alpha\gamma\beta} \]

\[G_{\alpha\beta} = \text{Einstein tensor, } T_{\alpha\beta} = \text{Energy-matter} \]
Cosmic censorship hypothesis.

Scalar field:

Christodoulou: Existence of solutions forming naked singularities (nongeneric).

Choptuik: Oscillations in self-similar variables. (Numerical solution).

Critical collapse: Transition between black-hole formation and absence of singularities.
Singularity formation for the Vlasov-Einstein system (joint work with A. Rendall).

Vlasov-Einstein system with spherical symmetry for a collisionless distribution of matter. (Schwarzschild’s coordinates).

\[
ds^2 = -e^{2\mu(t,r)} dt^2 + e^{2\lambda(t,r)} dr^2 + r^2 [d\theta^2 + \sin^2(\theta) d\phi^2]
\]

\[
r = |x| \ , \ w = \frac{x \cdot v}{r} \ , \ F = |x \wedge v|^2
\]

\[
f = f(r, w, F, t)
\]
Vlasov-Einstein system (spherical symmetry):

\[\partial_t f + e^{\mu-\lambda} \frac{w}{E} \partial_r f - \left(\lambda_t w + e^{\mu-\lambda} \mu_r E - e^{\mu-\lambda} \frac{F}{r^3 E} \right) \partial_w f = 0 \]

\[E = \sqrt{1 + w^2 + \frac{F}{r^2}} \]

\[e^{-2\lambda} (2r\lambda_r - 1) + 1 = 8\pi r^2 \rho \]

\[e^{-2\lambda} (2r\mu_r + 1) - 1 = 8\pi r^2 p \]

\[\mu(0) = \lambda(0) = \lambda(\infty) = 0 \]

\[\rho = \frac{\pi}{r^2} \int_{-\infty}^{\infty} \int_{0}^{\infty} Ef dF dw \]

\[p = \frac{\pi}{r^2} \int_{-\infty}^{\infty} \int_{0}^{\infty} \frac{w^2}{E} f dF dw \]
Goal: To construct self-similar solutions for the Vlasov-Einstein system generating singularities without formation on a horizon.

Absence of singularities for the Vlasov-Poisson system in dimension 3 (Pffaffelmoser, Lions-Perthame).

Vlasov-Einstein. (Gundlach-Martín-García).
Self-similar solutions \iff Symmetry group.
Near the singularity high velocities expected:

$$w >> 1$$

$$E = \sqrt{1 + w^2 + \frac{F}{r^2}} \approx \sqrt{w^2 + \frac{F}{r^2}}$$

This motivates to study the massless Vlasov-Einstein system.

$$E = \sqrt{w^2 + \frac{F}{r^2}}$$
Symmetry group for the massless Vlasov-Einstein system:

\[r \rightarrow \theta r \ , \ t \rightarrow \theta t \ , \ w \rightarrow \frac{1}{\sqrt{\theta}} w \ , \ F \rightarrow \theta F \ , \ f \rightarrow f \]

(Self-similar solutions would be invariant under this symmetry group).

A more convenient system of variables:

\[w \rightarrow v = \frac{w}{\sqrt{F}} \]
Massless Vlasov-Einstein system:

\[
\partial_t f + e^{\mu-\lambda} \frac{v}{\tilde{E}} \partial_r f - \left(\lambda_t v + e^{\mu-\lambda} \mu_r \tilde{E} - e^{\mu-\lambda} \frac{F}{r^3 \tilde{E}} \right) \partial_w f = 0
\]

\[
\tilde{E} = \sqrt{v^2 + \frac{1}{r^2}}
\]

\[
e^{-2\lambda}(2r \lambda_r - 1) + 1 = 8\pi r^2 \rho
\]

\[
e^{-2\lambda}(2r \mu_r + 1) - 1 = 8\pi r^2 p
\]

\[
\mu(0) = \lambda(0) = \lambda(\infty) = 0
\]

\[
\rho = \frac{\pi}{r^2} \int_{-\infty}^{\infty} \int_{0}^{\infty} \tilde{E}fF dF dv , \quad p = \frac{\pi}{r^2} \int_{-\infty}^{\infty} \int_{0}^{\infty} \frac{w^2}{\tilde{E}} fF dF dv
\]
In these new variables the gravitational fields depend on f only through the quantity:

$$\zeta(r, v, t) = \int_0^\infty fF dF$$

The system of equations for (f, λ, μ) can be replaced by a system of equations for (ζ, λ, μ).

Self-similar solutions:

$$f(r, v, F, t) = G(y, V, \Phi), \quad \mu(r, t) = U(y), \quad \lambda(r, t) = \Lambda(y)$$

$$y = \frac{r}{(-t)}, \quad V = (-t)v, \quad \Phi = \frac{F}{(-t)}$$
\[yG_y - VG_V + \Phi G_{\Phi} + e^{U-\Lambda} \frac{V}{\hat{E}} G_y - \]
\[- \left(y\Lambda_y V + e^{U-\Lambda} U_y \hat{E} - e^{U-\Lambda} \frac{1}{y^3 \hat{E}} \right) G_V \]
\[= 0 \]

\[\hat{E} = \sqrt{V^2 + \frac{1}{y^2}} \]

\[e^{-2\Lambda}(2y\Lambda_y - 1) + 1 = 8\pi y^2 \tilde{\rho} \]

\[e^{-2\Lambda}(2yU_y + 1) - 1 = 8\pi y^2 \tilde{p} \]

\[\tilde{\rho} = \frac{\pi}{r^2} \int_{-\infty}^{\infty} \int_{0}^{\infty} \hat{E} G\Phi d\Phi dV , \]
\[\tilde{p} = \frac{\pi}{r^2} \int_{-\infty}^{\infty} \int_{0}^{\infty} \frac{V^2}{\hat{E}} G\Phi d\Phi dV \]
Integration of the system:

\[G = \text{constant along characteristics} \]

\[
\frac{dy}{d\sigma} = e^{-\Lambda} \frac{\partial H}{\partial V}, \quad \frac{dy}{d\sigma} = e^{-\Lambda} \frac{\partial H}{\partial V}
\]

\[H = \frac{e^U}{y} \sqrt{V^2 y^2 + 1} + yV e^\Lambda \]

Trajectories contained in \(\{ H = h \} \).

Other auxiliary function:

\[\zeta(r, v, t) = (-t)^2 \Theta(y, V) \]
Self-similar solutions:

$$\Theta = \Theta(y, V) \ , \ \tilde{\rho} = \frac{\pi}{r^2} \int_{-\infty}^{\infty} \hat{E}\Theta dV \ , \ \tilde{p} = \frac{\pi}{r^2} \int_{-\infty}^{\infty} \frac{V^2}{\hat{E}} \Theta dV$$

Along characteristics:

$$\frac{d\Theta}{d\sigma} = 2\Theta$$

$$H = \frac{e^U}{y} \sqrt{V^2 y^2 + 1} + y V e^\Lambda = h$$

$$e^{-2\Lambda}(2y\Lambda_y - 1) + 1 = 8\pi y^2 \tilde{\rho}$$

$$e^{-2\Lambda}(2yU_y + 1) - 1 = 8\pi y^2 \tilde{p}$$

$$\hat{E} = \sqrt{V^2 + \frac{1}{y^2}}$$
Singular self-similar solutions. (Dust-like solutions).
Solutions supported in one characteristic curve:

\[G(y, V, \Phi) = A(y, V, \Phi)\delta(H(y, V) - h) \]
\[\Theta(y, V) = \beta(\sigma)\delta(H(y, V) - h) \], \quad \beta(\sigma) = \beta_0 e^{2\sigma}, \quad \beta_0 \geq 0 \]
\[\{H(y, V) = h\} = \{V = V_1(y), V = V_2(y) \mid y \geq y_0\}, \quad V_1(y) \leq V_2(y) \]

Fully dispersive solution: Support in three-dimensional sets of the space \((y, V, \Phi)\).

Dust solutions: Support in manifolds with smaller dimension than the dimension of the phase space.

These solutions are supported in two-dimensional surfaces of the space \((y, V, \Phi)\).
The problem of the considered dust-like solutions can be reduced to the (4-dimensional) system of ODEs:

\[e^{-2\Lambda}(2y\Lambda_y - 1) + 1 = 8\pi y^2 \tilde{\rho} \quad , \quad e^{-2\Lambda}(2yU_y + 1) - 1 = 8\pi y^2 \tilde{p} \]

\[\frac{d\sigma_i}{dy} = \frac{1}{y + e^{U-\Lambda} \frac{V_i y}{\sqrt{V_i^2 y^2 + 1}}} , \quad i = 1, 2 \]

\[\tilde{\rho}(y) = \frac{\pi \beta_0 \chi_{\{y>y_0\}}}{y^3} \sum_{i=1}^{2} \frac{(-1)^i e^{2\sigma_i(y)} [(V_i(y))^2 y^2 + 1]}{V_i e^{U} y + ye^\Lambda \sqrt{V_i^2 y^2 + 1}} \]

\[\tilde{p}(y) = \frac{\pi \beta_0 \chi_{\{y>y_0\}}}{y} \left[\sum_{i=1}^{2} \frac{(-1)^i e^{2\sigma_i(y)} (V_i(y))^2}{V_i e^{U} y + ye^\Lambda \sqrt{V_i^2 y^2 + 1}} \right] \]
Behaviour of the support and the gravitational fields near the minimum radius:

\[V_i(y_0) = V_0 = -\frac{1}{\sqrt{1 - y_0^2}} , \quad i = 1, 2 \]

\[V_i(y) - V_0 \sim \frac{K_i}{\sqrt{y - y_0}} , \quad y \to y_0^+ , \quad i = 1, 2 \]

\[\Lambda(y) \sim \theta_1 \sqrt{y - y_0} , \quad y \to y_0^+ \]

\[U(y) \sim \theta_2 \sqrt{y - y_0} , \quad y \to y_0^+ \]
Dust-like solutions: Main result.

Theorem: For \(y_0 \) small enough there exist \(\beta_0 \) such that the solution of the previous ODE system with the prescribed initial conditions at \(y \to y_0^+ \) and defined for all \(y \geq y_0 \). Moreover:

\[
U \sim \log\left(\frac{y}{y_0}\right) + \log\left(\sqrt{1 - y_0^2}\right) + o(1), \quad \Lambda \to \log\left(\sqrt{3}\right) \quad \text{as} \quad y \to \infty
\]

\[
V_1 \sim -\frac{2y_0\sqrt{3(1 - y_0^2)}}{(1 - 4y_0^2)y}, \quad V_2 \sim -\frac{\sqrt{1 - y_0^2}}{\sqrt{3}y_0} \frac{C_1}{y} \left(\frac{y_0}{y}\right)^2 \quad \text{as} \quad y \to \infty
\]
Idea of the proof:

Reduction to an autonomous system:

\[s = \log\left(\frac{y}{y_0}\right), \quad U = \log\left(\frac{y}{y_0}\right) + u, \quad \zeta_i = yV_i, \quad Q_i = \frac{y_0}{y} e^{\sigma_i}, \quad i = 1, 2 \]
Then the differential equations become:

\[e^u \sqrt{\xi_i^2 + 1} + y_0 \xi_i e^\Lambda = \sqrt{1 - y_0^2} \quad , \quad i = 1, 2 \quad , \quad \xi_1 < \xi_2 \]

\[\frac{dQ_i}{ds} = -\frac{e^u Q_i \xi_i}{y_0 e^\Lambda \sqrt{(\xi_i)^2 + 1} + \xi_i e^u} \quad , \quad i = 1, 2 \]

\[e^{-2\Lambda}(2\Lambda s - 1) + 1 = \frac{\theta}{2} \sum_{i=1}^{2} \frac{Q_i^2 [\xi_i^2 + 1]}{\xi_i e^u + y_0 e^\Lambda \sqrt{\xi_i^2 + 1}} \quad , \quad \theta = \frac{16\pi^2 \beta_0}{y_0} \]

\[e^{-2\Lambda}(2u_s + 3) - 1 = \frac{\theta}{2} \sum_{i=1}^{2} \frac{Q_i^2 (\xi_i)^2}{\xi_i e^u + y_0 e^\Lambda \sqrt{\xi_i^2 + 1}} \]

with initial conditions:

\[u = 0, \quad \Lambda = 0 \quad , \quad Q_i = 1 \quad , \quad i = 1, 2 \quad \text{at} \quad s = 0^+ \quad (*) \]
There exists a unique trajectory satisfying (*).
(The square root singularity near y_0 can be removed):

$$Z = \sqrt{(e^{-2u}(1 - y_0^2) - 1)(1 - y_0^2 e^{2(\Lambda - u)}) + y_0^2(1 - y_0^2)e^{2(\Lambda - 2u)}}$$

$$G = e^{-2\Lambda}, \quad ds = 2GZd\chi, \quad \chi = 0 \text{ at } s = 0$$

$$\frac{dQ_1}{d\chi} = 2GQ_1\zeta_1, \quad \frac{dQ_2}{d\chi} = -2GQ_1\zeta_1$$

$$\frac{dG}{d\chi} = 2G\left[Z(1 - G) - \frac{\theta e^{-u}}{2}[Q_1^2(\zeta_1^2 + 1) + Q_2^2(\zeta_2^2 + 1)]\right]$$

$$\frac{dZ}{d\chi} = (3G - 1 - 2G\Delta)(Z^2 + 1)$$

$\Delta = \Delta(G, Z, Q_1, Q_2)$ is analytic near $(G, Z, Q_1, Q_2) = (1, 0, 1, 1)$.
A trajectory globally defined approaches the equilibrium point:

\[Q_1 = Q_{1,\infty} = 0, \quad Q_2 = Q_{2,\infty} = \frac{2\sqrt{y_0}}{3^{\frac{1}{4}} \sqrt{\theta}} \]

\[\Lambda = \Lambda_{\infty} = \frac{\log(3)}{2}, \quad u = u_{\infty} = \log\left(\sqrt{1 - y_0^2}\right) \]

For \(y_0 \) small it is possible to approximate the three-dimensional stable manifold of the equilibrium point \((Q_{1,\infty}, Q_{2,\infty}, \Lambda_{\infty}, u_{\infty})\).

Shooting argument: Changing \(\theta \) is it possible to have the point \((1, 1, 0, 0)\) in this stable manifold.
In the next region it is convenient to use the variable G, Z.

$G = e^{\lambda G}, \quad Z = e^Z$.

Then the curve Y becomes

$$
\left\{ \left(Z^2 + 1 \right) G \left(1 - G \right) = \frac{4}{3\pi} \right\} \Rightarrow \delta
$$
We now extend the portion of the manifold to values with $\Theta \geq 0$. We study the
behavior of the manifold for $\Theta \rightarrow \infty$. In the limit $\Theta \rightarrow 0^+$
the manifold becomes flat.
SOME PHYSICAL PROPERTIES OF THE SOLUTION (I).

The solution obtained in this way produces a true singularity for the curvature. (Blow-up of Kretschmann scalar):

$$R_{\alpha\beta\gamma\delta} R_{\alpha\beta\gamma\delta} \geq \frac{16m^2}{r^6}, \quad m = \frac{r}{2} \left(1 - e^{-2\Lambda\left(\frac{r}{(-t)}\right)}\right) \sim \frac{r}{3} \quad \text{as} \quad \frac{r}{(-t)} \to \infty$$

(The singularity is not a coordinate singularity).
SOME PHYSICAL PROPERTIES OF THE SOLUTION (II).

The obtained singularity describes the portion of space-time contained inside the light-cone arriving to the point \(r = 0, t = 0^- \). Such a light-cone is reached as \(r \to \infty \). Consequence: The solution cannot be continued by means of a direct "glueing" with a planar space. To obtain a solution that behaves asymptotically as Minkowsky space one should move away from the self-similar regime.
Gundlach-Martin-García self-similar solution for the VE system.

- Fully dispersive.
- Different rescaling group.
- Singular along the light-cone.
- Small perturbation of Minkowsky space.
- Numerical solution of some equations.
WORK IN PROGRESS. FURTHER DEVELOPMENTS.

(1) Thickening of the solution. To derive a fully-dispersive self-similar solution. (Asymptotics).

(2) It is possible to "glue" ("match") this solution with an asymptotically flat Minkowsky space?.. (Away from the self-similar setting).

(3) Effect of the mass of the particles. (Away from the self-similar setting).
CONCLUDING REMARKS.

- Existence of self-similar "dust-like" solutions for the massless Vlasov-Einstein model.
- The key idea is to reduce the problem to an autonomous four-dimensional dynamical system.
- Asymptotic expansions for fully dispersive radially symmetric self-similar solutions of the VE system generating singularities in finite time.
- Rigorous construction of the fully dispersive self-similar solutions?.
- Solutions of the full VE system (with mass): How to modify the solutions away from the singularity to connect then with a flat Minkowsky space-time?.