SECOND INTERNATIONAL CONFERENCE ON HYPERBOLIC PROBLEMS. AACHEN 1988.

BOUNDARY CONDITIONS FOR NONLINEAR HYPERBOLIC
SYSTEMS OF CONSERVATION LAWS.

Frangois DUBOIS" & Philippe LE FLOCH

ECOLE POLYTECHNIQUE, Centre de Mathématiques Appliquées,

F-91128 Palaiseau Cedex, France.

* AEROSPATIALE, SDT-STMI, BP96, F-78133 Les Mureaux Cedex, France.

ABSTRACT

We propose two formulations of the boundary conditions for nonlinear
hyperbolic systems of conservation laws. A first approach is based on the
vanishing viscosity method and a second one is related to the Riemann
problem. The equivalence between these two conditions is studied. The
latter formulation is extended to treat numerically physically relevant

boundary conditions. Monodimensional experiments are presented.

INTRODUCTION

We study initial-boundary value problems for nonlinear hyperbolic
systems of conservation laws. Recall that with strong Dirichlet boundary
conditions the associated problem is not well posed. Generally there is
neither existence nor uniqueness. Thus weaker conditions are necessary ; in
the linear case by example we know that data are given only on incoming
characteristics.

In this paper we define the boundary condition in terms of admissible
values at the boundary, related to the boundary datum. In our first
formulation the set of admissible values is defined thanks to a boundary
entropy inequality obtained by the vanishing viscosity method and the

second set 1is related to the resolution of a Riemann problem at the



boundary. The equivalence of these two formulations is established for
nonconvex scalar conservation laws and strictly hyperbolic linear systems.
The second formulation is naturally applied to Godunov-type numerical
schemes : the numerical boundary condition reduces to the computation of a
boundary flux thanks to some Riemann problem (or partial Riemann problem in
physically relevant situations). As an application, outgoing waves from the

Sod shock tube are presented.

BOUNDARY ENTROPY INEQUALITY (FIRST FORMULATION)

We consider a nonlinear hyperbolic system of conservation laws in one

space dimension :

du ) n
— + — f(u) =0 ; u(x,t) € R , x>0, t>0 (L)
at ax

where £ : R + R is a smooth flux-function. We suppose that there exists at

least a pair (#,q) of entropy-flux in the sense of Lax [9]. The initial

boundary value problem obtained by the viscosity method (¢>0)

[ 2 €
du ] € du
—_— +_f(u)=€—2— X>O,t>0
at ax ax
h €
u (x,0) = vo(x) x>0 (2)
€
u (0,t) = uy(t) t >0
€ €
admits a wunique solution u and we study the behaviour of u at the

boundary as € tends to zero. In fact a discontinuity appears, in general,
at the boundary. The following result (essentially formal) yields an

inequality at this discontinuity.

€ 1,1
Theorem 1. Suppose that u is bounded in Wloc(foRf,R") and converges

in L1

loc to u as €»0. Then for each admissible pair (n,q) of entropy-flux we

have the following boundary entropy inequality :

q(u(0,£)) - q(uy(£)) - dn(uy(£)). (F(u(0®,£))-£(uy(t))) <0, £>0 (3)




between the taken value u(0',t) and the prescribed value uo(t) at the

boundary.

This result was first derived in [2] in the particular case of scalar
conservation laws. The details concerning the derivation of the boundary
entropy inequality (3) in the case of systems of conservation laws are
presented in [6]. Remark that the 1latter inequality was independently
obtained by other methods [1,12].

Given a state u, we define a (first) set of admissible values at the

boundary :

E(uy) =4 v € R", q(v)-q(uy)-dn(uy) . (£(v)-£(uy)) <0 ,
Y (n,q) pair of entropy-flux }

Therefore let wus extend the notion of Dirichlet boundary condition and

define our (first) formulation of the boundary condition :

u(0*,t) € E(uy(t)) , t >0 (&)
The set E(uo(t)) can be entirely explicited for both strictly hyperbolic
linear systems and non-convex scalar conservation laws (see [6] for the

proofs).

Proposition 1. Strictly hyperbolic linear systems.

Suppose that f{u) = A.u, with a constant matrix A characterized by n

eigenvalues X; (and n associated eigenvectors r,) satisfying
Ap < <L <A =0, <L < (5)

Then the set E(u,) is the affine space containing u, and generated by the p

first eigenvectors of A :

P
E(y,) = { u, + §;1 @ T, y,...,q, € R }

The interpretation of the boundary condition (4) here is the following :
the components of u(0*,t) on the {(n-p) last eigenvectors (i.e. the incoming
characteristics) are given by the boundary state uo(t). With the present

approach we recover the classical one in this particular case.



Proposition 2. Scalar conservation laws.

Suppose that the flux f(u) is a ¢! function from R to R. Then the set E(uo)

of the admissible states u is entirely characterized by the family of

inequalities
f(w) - £(k)
——;—-“‘i{—— Vke [u,uo] U [uo,u] (6)

This proposition was previously established in [10], and a geometrical
interpretation is presented in [6]. In the particular case of convex scalar
conservation laws the latter is simpler. Let us specify it for the Burgers

equation.

Propositon 3. Burgers equation.
When u € R and f(u)
(i) if u, = o, E(uo)
(i1) if uy = 0, E(uy)

u2/2 , the set E(u,) is given by :
]'ws'uo] U {ug}
]-00,0]

In the general case of an hyperbolic system of conservation laws, the lack
of mathematical entropies does not allow a complete description of this

boundary set E(uy).
APPROACH BY THE RIEMANN PROBLEM (SECOND FORMULATION)
For our second formulation of the boundary condition [5,6] we suppose
that each Riemann problem R(uL,uR) associated with (1) admits a unique

entropy solution denoted by w(x/t;uL,uR). Let us define a second set of

admissible values by :
V(yy) =4 w(0";u,,u), u, varying in R" }

Then we have the following result which generalizes [9]



Theorem 2 Let Vo Yg be constant states of R". The problem
du 3
— 4+ — f(u) =0 x>0, t>0
at ax
(7)
u(x,0) = v, x>0
u(0,t) € V(yuy) t >0

is well posed in the class of functions which consist of constant states

separated by at most n elementary waves (rarefactions, shocks, contacts).

Proposition 4. Link between the two formulations.

In particular cases of strictly hyperbolic linear systems and (non
necessarily convex) scalar conservation laws, the two sets are identical:

- n

E(uo) a= V(uu) v u, € R".

The advantage of the second formulation is that V(uo) can be easily

computed. For the p-system, V(uo) is exactly the l-wave containing u, . And,

in [5,6] we have given details on the V-sets in the case of barotropic

Euler-Saint Venant equations. For more precise relations concerning the E

and V sets in the particular case of 2x2 systems of conservation laws, we

refer to [3,6]. Refer also to [1l] about a formulation of boundary

conditions for weighted conservation laws.

APPLICATION TO THE EULER EQUATIONS OF GAS DYNAMICS

We apply now the ideas developed previously to Godunov-type finite
volume numerical schemes [8]. We restrict ourselves to the first order
accurate methods. The interval [0,1] is divided into N cells and the
numerical approximation of the conservation 1law (1) at time t =nAt in the

3

-]

cell is given by :

1 n n
— ( u, - ou )+Z;(fj+1/2 'fj-1/2 ) =0 (8)



For the internal cells we have classically

n n n .
fj-1-1/2 = ¢ ( uj , u}.” ), j=1,2,...,N-1 (9)

for some numerical flux fungtiog ¢ that approaches the flux f(w(O;u?,uj?1))
of the Riemann problem R(uj,uj+1) when x/t=0. We suppose that a boundary
state u, (resp uR) is given for x =< 0 (resp x = 1) and we consider it
intuitively as a limiting state for x tending towards -« (resp +w). Thus
the numerical boundary condition at time t, results from the interaction of
u (resp uR) with the wvalue u? (resp u:) of the field in the first (resp
last) cell:

n n n n

2P A T A A (10)

This kind of numerical boundary condition in terms of a numerical flux
is mnatural with the approach of finite volumes. This fact was first

recognized by Godunov (e.g. [7]).

The numerical scheme (8)(9)(10) has been applyed to the Sod shock tube
[15] for the Euler equations of gas dynamics, i.e. with 1left and right
states u = (pL,VL,pL) = (1,0,1) , u, = (pD,VD,pD) = (0.125,0,0.1) , and
N=100 cells. We used the Osher upwind scheme [13] and have performed the
numerical computation for a time sufficiently long so that the different
waves have been gone outside the computational domain [0,1] (see Figure 1).
Some results are plotted on Figure 2. The boundary condition (10) appears
numerically as transparent for all these nonlinear waves and the physical
fields at x = 0 and x = 1 are correct (the difference with the exact
solution is first due to the high level of numerical viscosity contained in
the first order scheme). More details on this problem with the use of the

exact linearized implicit Osher scheme are developed in [4].

We focus mnow on more realistic boundary conditions for the Euler
equations. For most of the internal aerodynamics problems a state uy(t) is
not physically given at the boundary. As usual, we distinguish between four
cases : the fluid may be sub or super-sonic at the in or out-flow and
physical parameters can be associated with each case [16] : (i) supersonic
inflow : a state u; , (ii) subsonic inflow : total enthalpy H and physical

entropy S , (iii) subsonic outflow : static pressure P , (iv) supersonic




outflow : no numerical datum. We review briefly the main ideas of [4]. For
each of the four above cases a manifold (eventually with boundary) M is

defined by the boundary data; we have respectively

(i) H={ (povvoxpg)}

{ v ']
(i1) M=q (pv,p) /v +——=H, p=5p
(iii) M =4 (p,v,p) / p=1"P }

(iv) M = { (p,v,p) / Vv-¢c=20 |, ¢ = R } .
P

Then the formula (10) relative to the computation of the boundary flux is
adapted as follows (we consider only the case x = 0). A partial Riemann
problem P(M,z) is posed naturally by the boundary condition between the
manifold M and the state z located in the (first) cell of the computational
domain. We solve this problem in the same manner as Lax did [9] for the
classical Riemann problem. A family of codimM (equal respectively to
3,2,1,1 in the previous cases) mnonlinear waves issued from z intersects M
at a state I. Interpreting those waves in the (x,t) plane, the solution of
P(M,z) joins the state I (of M) to the state =z thanks to a fan of codimM
waves (Figure 3). Then the boundary flux f”2 is given by

f = f(W) (11)

172
where W is the state of this fan located at X/t=0+. In [4] we have used the
Riemann solver of Osher that contains only (eventually multivalued)
rarefactions. Thus we have taken into account the (eventual) multiplicity
of the states W. Furthermore in the particular case (iii) (given pressure
P) and for a sufficiently weak nonlinearity (i.e. p(z) not too far from P)
we recover previous results obtained by Osher-Chakravarthy [14]. We have
also tested in [4] all thoses boundary conditions (i)-(iv) for one
dimensional nozzles using both the explicit and linearized implicit

versions of the scheme.
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Figure 1. The Sod shock tube for time tending to infinity.
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Figure 2. Evolution of the velocity at x=0 (left) and of the

density at x=1 (right) for the Sod shock tube with
N=100 cells. The dotted line is the exact solution.
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Figure 3. Resolution of the partial Riemann problem p(M,z)

in the particular case (iii).



