

Non-isothermal two phase flows of incompressible fluids

Elisabetta Rocca - joint work with M. Eleuteri (Milano) and G. Schimperna (Pavia)

Supported by the FP7-IDEAS-ERC-StG Grant "EntroPhase"

- The motivation
- The PDEs (equations and inequalities)
- The modelling
- The analytical results in 3D [Eleuteri, R., Schimperna, WIAS preprint no. 1920 (2014)]
- The expected improvements in 2D
- Some open related problems

- A non-isothermal model for the flow of a mixture of two
 - viscous
 - incompressible
 - Newtonian fluids
 - of equal density
- Avoid problems related to interface singularities
 - ⇒ use a diffuse interface model
 - ⇒ the classical sharp interface replaced by a thin interfacial region
- A partial mixing of the macroscopically immiscible fluids is allowed
 - $\Longrightarrow \varphi$ is the order parameter, e.g. the concentration difference
- The original idea of diffuse interface model for fluids: HOHENBERG and HALPERIN, '77
 - → H-model
 - Later, GURTIN ET AL., '96: continuum mechanical derivation based on microforces
- Models of two-phase or two-component fluids are receiving growing attention (e.g., ABELS, BOYER, GARCKE, GRÜN, GRASSELLI, LOWENGRUB, TRUSKINOVSKI, ...)

The main aim of our contribution [Eleuteri, R., Schimperna, in preparation]

- Including temperature dependence is a widely open issue
 Difficulties: getting models which are at the same time thermodynamically consistent and mathematically tractable
- Our idea: a weak formulation of the system as a combination of total energy balance plus entropy production inequality => "Entropic formulation"
- This method has been recently proposed by [BULÍČEK-MÁLEK-FEIREISL, '09] for the Navier-Stokes-Fourier system and has been proved to be effective to study e.g.
 - nonisothermal models for phase transitions ([Feireisl-Petzeltová-R., '09]) and
 - the evolution of nematic liquid crystals ([FRÉMOND, FEIREISL, R., SCHIMPERNA, ZARNESCU, '12,'13])

The state variables and physical asssumptions

- We want to describe the behavior of a mixture of two incompressible fluids of the same density in terms of the following state variables
 - u: macroscopic velocity (Navier-Stokes),
 - p: pressure (Navier-Stokes),
 - φ : order parameter (Cahn-Hilliard),
 - \blacksquare μ : chemical potential (Cahn-Hilliard),
 - \blacksquare θ : absolute temperature (Entropic formulation).
- We do not neglect convection and capillarity effects. We assume constant mobility and smooth configuration potential in Cahn-Hilliard. We take temperature dependent coefficients wherever possible. We assume the system being insulated from the exterior.

a weak form of the momentum balance

$$\mathbf{u}_t + \mathbf{u} \cdot \nabla_x \mathbf{u} + \nabla_x p = \operatorname{div}(\nu(\theta)D\mathbf{u}) - \operatorname{div}(\nabla_x \varphi \otimes \nabla_x \varphi), \quad \operatorname{div} \mathbf{u} = 0;$$

■ the Cahn-Hilliard system in $H^1(\Omega)'$

$$\varphi_t + \mathbf{u} \cdot \nabla_x \varphi = \Delta \mu, \quad \mu = -\varepsilon \Delta \varphi + \frac{1}{\varepsilon} F'(\varphi) - \theta;$$

a weak form of the total energy balance

$$\partial_t \left(\frac{1}{2} |\mathbf{u}|^2 + e \right) + \mathbf{u} \cdot \nabla_x \left(\frac{1}{2} |\mathbf{u}|^2 + e \right) + \operatorname{div} \left(p\mathbf{u} + \mathbf{q} - \mathbb{S}\mathbf{u} \right)$$
$$- \operatorname{div} \left(\varepsilon \varphi_t \nabla_x \varphi + \mu \nabla_x \mu \right) = 0 \quad \text{where} \quad e = \frac{1}{\varepsilon} F(\varphi) + \frac{\varepsilon}{2} |\nabla_x \varphi|^2 + \int_1^{\theta} c_v(s) \, \mathrm{d}s;$$

the weak form of the entropy production inequality

$$(\Lambda(\theta) + \varphi)_t + \mathbf{u} \cdot \nabla_x (\Lambda(\theta)) + \mathbf{u} \cdot \nabla_x \varphi - \operatorname{div} \left(\frac{\kappa(\theta) \nabla_x \theta}{\theta} \right)$$

$$\geq \frac{\nu(\theta)}{\theta} |D\mathbf{u}|^2 + \frac{1}{\theta} |\nabla_x \mu|^2 + \frac{\kappa(\theta)}{\theta^2} |\nabla_x \theta|^2, \quad \text{where} \quad \Lambda(\theta) = \int_1^\theta \frac{c_v(s)}{s} \, \mathrm{d}s.$$

Modelling

- We start by specifying two functionals:
 - lacktriangle the free energy Ψ , related to the equilibrium state of the material, and
 - the dissipation pseudo-potential Φ, describing the processes leading to dissipation of energy (i.e., transformation into heat)
- Then we impose the balances of momentum, configuration energy, and both of internal energy and of entropy, in terms of these functionals
- The thermodynamical consistency of the model is then a direct consequence of the solution notion

The total free energy is given as a function of the state variables $E=(\theta,\varphi,\nabla_x\varphi)$

$$\Psi(E) = \int_{\Omega} \psi(E) dx, \quad \psi(E) = f(\theta) - \theta\varphi + \frac{\varepsilon}{2} |\nabla_x \varphi|^2 + \frac{1}{\varepsilon} F(\varphi)$$

- $f(\theta)$ is related to the specific heat $c_v(\theta) = Q'(\theta)$ by $Q(\theta) = f(\theta) \theta f'(\theta)$. In our case we need $c_v(\theta) \sim c_\delta \theta^\delta$ for some $\delta \in (1/2,1)$
- $\mathbf{z} > 0$ is related to the interfacial thickness
- \blacksquare we need $F(\varphi)$ to be the classical smooth double well potential $F(\varphi) \sim \frac{1}{4}(\varphi^2-1)^2$

The dissipation potential is taken as function of $\delta E=(D\mathbf{u},\frac{D\varphi}{Dt},\nabla_x\theta)$ and E

$$\Phi(\delta E, E) = \int_{\Omega} \phi(D\mathbf{u}, \nabla_x \theta) \, \mathrm{d}x + \left\langle \frac{D\varphi}{Dt}, J^{-1} \frac{D\varphi}{Dt} \right\rangle$$
$$= \int_{\Omega} \left(\frac{\nu(\theta)}{2} |D\mathbf{u}|^2 + I_{\{0\}} (\operatorname{div} \mathbf{u}) + \frac{\kappa(\theta)}{2\theta} |\nabla_x \theta|^2 \right) \, \mathrm{d}x + \left\| \frac{D\varphi}{Dt} \right\|_{H^1_{\#}(\Omega)'}^2$$

- $\mathbf{D}\mathbf{u} = (\nabla_x \mathbf{u} + \nabla_x^t \mathbf{u})/2$ the symmetric gradient
- $\frac{D(\cdot)}{Dt} = (\cdot)_t + \mathbf{u} \cdot \nabla_x(\cdot)$ the material derivative
- $\begin{array}{l} \blacksquare \ J: H^1_\#(\Omega) \to H^1_\#(\Omega)' \ \text{the Riesz isomorphism} \\ \langle Ju,v \rangle := ((u,v))_{H^1_\#(\Omega)} := \int_\Omega \nabla_x u \cdot \nabla_x v \, \mathrm{d}x, \\ H^1_\#(\Omega) = \{\xi \in H^1(\Omega) : \ \overline{\xi} := |\Omega|^{-1} \int_\Omega \xi \, \mathrm{d}x = 0\} \end{array}$
- $\quad \blacksquare \quad \nu = \nu(\theta) > 0$ the viscosity coefficient, $\kappa = \kappa(\theta) > 0$ the heat conductivity
- Incompressibility: I_0 the indicator function of $\{0\}$: $I_0=0$ if $\operatorname{div} \mathbf{u}=0,+\infty$ otherwise)

Modelling: the contraints and the dissipation potential

The dissipation potential was taken as

$$\Phi = \Phi\left(D\mathbf{u}, \frac{D\varphi}{Dt}, \nabla_x \theta\right) = \int_{\Omega} \phi(D\mathbf{u}, \nabla_x \theta) \, \mathrm{d}x + \left\langle \frac{D\varphi}{Dt}, J^{-1} \frac{D\varphi}{Dt} \right\rangle$$

- If a time-dependent set of variables is given such that
 - **a**.e. in (0,T), Ψ and Φ are finite
 - \mathbf{u} is such that $\mathbf{u} \cdot \mathbf{n} = 0$ on Γ
 - lacksquare arphi satisfies the mass conservation constraint $arphi(t,x)=arphi(0,x)=arphi_0(x)$ a.e.

then ${f u}$ is divergence-free and we get

$$\int_{\Omega} \frac{D\varphi}{Dt} = \int_{\Omega} (\varphi_t + \mathbf{u} \cdot \nabla_x \varphi) \, \mathrm{d}x = 0$$

■ Then we can set $\mu_\#:=-J^{-1} rac{D arphi}{D t},$ so that $rac{D arphi}{D t}=-J \mu_\#=\Delta \mu_\#$ and we get

$$\Phi(\delta E, E) = \int_{\Omega} \widetilde{\phi}(\delta E, E) \, \mathrm{d}x, \quad \text{where } \widetilde{\phi}(\delta E, E) = \phi(\delta E, E) + \frac{1}{2} |\nabla_x \mu_\#|^2$$

It is obtained (at least for no-flux b.c.'s) as the following gradient-flow problem

$$\partial_{L_{\#}^{2}(\Omega), \frac{D\varphi}{Dt}} \Phi + \partial_{L_{\#}^{2}(\Omega), \varphi_{\#}} \Psi = 0$$

where
$$L^2_\#(\Omega)=\{\xi\in L^2(\Omega)\,:\,\overline{\xi}:=|\Omega|^{-1}\int_\Omega\xi\,\mathrm{d}x=0\},\,\varphi_\#=\varphi-\overline{\varphi_0}$$

Combining the previous relations we then get

$$J^{-1}\left(\frac{D\varphi}{Dt}\right) = \varepsilon\Delta\varphi - \frac{1}{\varepsilon}\left(F'(\varphi) - \overline{F'(\varphi)}\right) + \theta - \overline{\theta}, \quad \frac{\partial\varphi}{\partial\mathbf{n}} = 0 \text{ on } \Gamma, \ \overline{\varphi}(t) = \overline{\varphi_0}$$

Applying the distributional Laplace operator to both hand sides and noting that $-\Delta J^{-1}v=v \text{ for any } v\in L^2_\#(\Omega), \text{ we then arrive at the Cahn-Hilliard system with Neumann hom. b.c. for } \mu \text{ and } \varphi$

$$\frac{D\varphi}{Dt} = \Delta\mu, \quad \mu = -\varepsilon\Delta\varphi + \frac{1}{\varepsilon}F'(\varphi) - \theta, \quad \frac{\partial\varphi}{\partial\mathbf{n}} = \frac{\partial\mu}{\partial\mathbf{n}} = 0 \text{ on } \Gamma \qquad \text{(CahnHill)}$$

where the auxiliary variable μ takes the name of *chemical potential*

The Navier-Stokes system is obtained as a momentum balance by setting

$$\frac{D\mathbf{u}}{Dt} = \mathbf{u}_t + \operatorname{div}(\mathbf{u} \otimes \mathbf{u}) = \operatorname{div} \sigma, \tag{momentum}$$

The Navier-Stokes system is obtained as a momentum balance by setting

$$\frac{D\mathbf{u}}{Dt} = \mathbf{u}_t + \operatorname{div}(\mathbf{u} \otimes \mathbf{u}) = \operatorname{div}(\sigma^d + \sigma^{nd}),$$
 (momentum)

where the stress σ is split into its

dissipative part

$$\sigma^d := \frac{\partial \phi}{\partial D\mathbf{u}} = \nu(\theta) D\mathbf{u} - p\mathbb{I}, \quad \text{div } \mathbf{u} = 0,$$

representing kinetic energy which dissipates (i.e. is transformed into heat) due to viscosity, and its

non-dissipative part σ^{nd} to be determined later in agreement with Thermodynamics

Nonlocal internal energy balance

The balance of internal energy takes the form

$$\frac{De}{Dt} + \operatorname{div} \mathbf{q} = \nu(\theta) |D\mathbf{u}|^2 + \sigma^{nd} : D\mathbf{u} + B \frac{D\varphi}{Dt} + \frac{\partial \psi}{\partial \nabla_x \varphi} \cdot \nabla_x \frac{D\varphi}{Dt} + \boxed{N}$$

where $e = \psi - \theta \psi_{\theta}$, $B = B^{nd} + B^d$ and

$$B^{nd} = \frac{\partial \psi}{\partial \varphi} = \frac{1}{\varepsilon} F'(\varphi) - \theta, \quad B^d = \partial_{L^2_{\#}(\Omega), \frac{D\varphi}{Dt}} \Phi = J^{-1} \left(\frac{D\varphi}{Dt} \right)$$

On the right hand side there appears a new (with respect to the standard theory of [FRÉMOND, '02]) term \boxed{N} balancing the nonlocal dependence of the last term in the pseudopotential of dissipation Φ

$$\Phi = \Phi\left(D\mathbf{u}, \frac{D\varphi}{Dt}\right) = \int_{\Omega} \phi \, \mathrm{d}x + \left\langle \frac{D\varphi}{Dt}, J^{-1} \frac{D\varphi}{Dt} \right\rangle$$

It will result from the Second Principle of Thermodynamics that $\int_{\Omega} N(x) \, \mathrm{d}x = 0$, in agreement with natural expectations

The Second Law of Thermodynamics

To deduce the expressions for σ^{nd} and N, we impose validity of the Clausius-Duhem inequality in the form

$$\theta \left(\frac{Ds}{Dt} + \operatorname{div} \left(\frac{\mathbf{q}}{\theta} \right) \right) \ge 0$$

where $e=\psi+\theta s$, being $s=-\psi_{\theta}$ the entropy density and we get

$$\sigma^{nd} = -\varepsilon \nabla_x \varphi \otimes \nabla_x \varphi, \quad N = \frac{1}{2} \Delta (\mu - \overline{\mu})^2$$

and the internal energy balance can be rewritten as

$$(Q(\theta))_t + \mathbf{u} \cdot \nabla_x Q(\theta) + \theta \frac{D\varphi}{Dt} - \operatorname{div}(\kappa(\theta)\nabla_x \theta) = \nu(\theta)|D\mathbf{u}|^2 + |\nabla_x \mu|^2$$

where
$$Q(\theta) = f(\theta) - \theta f'(\theta)$$
 and $Q'(\theta) =: c_v(\theta)$

The **dissipation** terms on the right hand side are in perfect agreement with Φ

$$\Phi = \int_{\Omega} \widetilde{\phi} \, \mathrm{d}x, \quad \text{where } \ \widetilde{\phi} = \phi + \frac{1}{2} |\nabla_x \mu|^2$$

Following [BULÍČEK, FEIREISL, & MÁLEK], we replace the pointwise internal energy balance by the total energy balance

$$(\partial_t + \mathbf{u} \cdot \nabla_x) \left(\frac{|\mathbf{u}|^2}{2} + e \right) + \operatorname{div} \left(p\mathbf{u} - \kappa(\theta) \nabla_x \theta - (\nu(\theta) D\mathbf{u}) \mathbf{u} \right)$$

$$= \operatorname{div} \left(\varphi_t \nabla_x \varphi + \mu \nabla_x \mu \right)$$
 (energy)

with the internal energy

$$e = F(\varphi) + \frac{1}{2} |\nabla_x \varphi|^2 + Q(\theta) \quad Q'(\theta) = c_v(\theta)$$

and the entropy inequality

$$(\Lambda(\theta) + \varphi)_t + \mathbf{u} \cdot \nabla_x (\Lambda(\theta) + \varphi) - \operatorname{div}\left(\frac{\kappa(\theta)\nabla_x \theta}{\theta}\right)$$
 (entropy)

$$\geq \frac{\nu(\theta)}{\theta} |D\mathbf{u}|^2 + \frac{1}{\theta} |\nabla_x \mu|^2 + \frac{\kappa(\theta)}{\theta^2} |\nabla_x \theta|^2, \quad \text{where} \quad \Lambda(\theta) = \int_1^\theta \frac{c_v(s)}{s} \, \mathrm{d}s \sim \theta^{\delta}$$

a weak form of the momentum balance (in distributional sense)

$$\mathbf{u}_t + \mathbf{u} \cdot \nabla_x \mathbf{u} + \nabla_x p = \operatorname{div}(\nu(\theta)D\mathbf{u}) - \operatorname{div}(\nabla_x \varphi \otimes \nabla_x \varphi), \quad \operatorname{div} \mathbf{u} = 0;$$

■ the Cahn-Hilliard system in $H^1(\Omega)'$

$$\varphi_t + \mathbf{u} \cdot \nabla_x \varphi = \Delta \mu, \quad \mu = -\Delta \varphi + F'(\varphi) - \theta;$$

a weak form of the total energy balance (in distributional sense)

$$\partial_t \left(\frac{1}{2} |\mathbf{u}|^2 + e \right) + \mathbf{u} \cdot \nabla_x \left(\frac{1}{2} |\mathbf{u}|^2 + e \right) + \operatorname{div} \left(p\mathbf{u} + \mathbf{q} - \mathbb{S}\mathbf{u} \right)$$
$$- \operatorname{div} \left(\varphi_t \nabla_x \varphi + \mu \nabla_x \mu \right) = 0 \quad \text{where} \quad e = F(\varphi) + \frac{1}{2} |\nabla_x \varphi|^2 + \int_0^\theta c_v(s) \, \mathrm{d}s;$$

the weak form of the entropy production inequality

$$(\Lambda(\theta) + \varphi)_t + \mathbf{u} \cdot \nabla_x (\Lambda(\theta)) + \mathbf{u} \cdot \nabla_x \varphi - \operatorname{div} \left(\frac{\kappa(\theta) \nabla_x \theta}{\theta} \right)$$

$$\geq \frac{\nu(\theta)}{\theta} |D\mathbf{u}|^2 + \frac{1}{\theta} |\nabla_x \mu|^2 + \frac{\kappa(\theta)}{\theta^2} |\nabla_x \theta|^2, \quad \text{where} \quad \Lambda(\theta) = \int_1^\theta \frac{c_v(s)}{s} \, \mathrm{d}s.$$

Assumptions on the data and boundary conditions

- In order to get a tractable system in 3D, we need to specify assumptions on coefficients in a careful way:
 - lacktriangle The viscosity $u(\theta)$ is assumed smooth and bounded
 - The specific heat $c_v(\theta) \sim \theta^{\delta}$, $1/2 < \delta < 1$
 - The heat conductivity $\kappa(\theta) \sim 1 + \theta^{\beta}$, $\beta \geq 2$
 - \blacksquare The potential $F(\varphi)=\frac{1}{4}(\varphi^2-1)^2$
- Concerning B.C.'s, our results are proved for no-flux conditions for θ, φ , and μ and complete slip conditions for $\mathbf u$

$$\mathbf{u} \cdot \mathbf{n}_{|\Gamma} = 0$$
 (the fluid cannot exit Ω , it can move tangentially to Γ)
$$[\mathbb{S}\mathbf{n}] \times \mathbf{n}_{|\Gamma} = 0, \quad \text{where } \mathbb{S} = \nu(\theta)D\mathbf{u} \quad \text{(exclude friction effects with the boundary)}$$

They can be easily extended to the case of periodic B.C.'s for all unknowns

Theorem

We can prove existence of at least one global in time weak solution $(\mathbf{u}, \varphi, \mu, \theta)$

$$\begin{split} \mathbf{u} &\in L^{\infty}(0,T;L^{2}(\Omega;\mathbb{R}^{3})) \cap L^{2}(0,T;\mathbf{V_{n}}) \\ \varphi &\in L^{\infty}(0,T;H^{1}(\Omega)) \cap L^{2}(0,T;H^{3}(\Omega)) \cap H^{1}(0,T;H^{1}(\Omega)') \\ \mu &\in L^{2}(0,T;H^{1}(\Omega)) \cap L^{\frac{14}{5}}((0,T) \times \Omega) \\ \theta &\in L^{\infty}(0,T;L^{\delta+1}(\Omega)) \cap L^{\beta}(0,T;L^{3\beta}(\Omega)) \cap L^{2}(0,T;H^{1}(\Omega)) \\ \theta &> 0 \ \text{ a.e. in } (0,T) \times \Omega, \quad \log \theta \in L^{2}(0,T;H^{1}(\Omega)) \end{split}$$

to system given by (momentum), (CahnHill), (entropy) and (energy), in distributional sense and for finite-energy initial data

$$\mathbf{u}_0 \in L^2(\Omega), \ \operatorname{div} \mathbf{u}_0 = 0, \ \varphi_0 \in H^1(\Omega), \ \theta_0 \in L^{\delta+1}(\Omega), \ \theta_0 > 0 \ \text{a.e.}$$

A priori bounds

- Existence proof based on a classical a-priori estimates compactness scheme
- The basic information is contained in the energy and entropy relations
- Note that the power-like growth of the heat conductivity and of the specific heat is required in order to provide sufficient summability of the temperature

Is this sufficient to pass to the limit?

- The **total energy balance** contains some nasty extra terms $\varphi_t \nabla_x \varphi + \mu \nabla_x \mu$. In particular, φ_t lies only in some **negative order** space (cf. (CahnHill))
- Using (CahnHill) and integrating by parts carefully the bad terms tranform into

$$-\Delta \mu^{2} + \operatorname{div}\left((\mathbf{u} \cdot \nabla_{x} \varphi) \nabla_{x} \varphi\right)$$
$$+ \operatorname{div}(\nabla_{x} \mu \cdot \nabla_{x} \nabla_{x} \varphi) - \operatorname{div} \operatorname{div}(\nabla_{x} \mu \otimes \nabla_{x} \varphi)$$

The above terms can be controlled by getting some **extra-integrability** of φ and μ from (CahnHill). To this aim having a "**smooth**" **potential** F is crucial!

What's better in 2D?

- Is it possible to say something more in the 2D-case?
- In particular, it would be interesting to see if one might deal with "strong" solutions.
 Moreover, we would like to drop some restriction on coefficients
- Let us make one test: in 2D the "extra stress" $\operatorname{div}(\nabla_x \varphi \otimes \nabla_x \varphi)$ in (momentum)

$$\mathbf{u}_t + \mathbf{u} \cdot \nabla_x \mathbf{u} + \nabla_x p = \operatorname{div}(D\mathbf{u}) - \operatorname{div}(\nabla_x \varphi \otimes \nabla_x \varphi)$$

lies in L^2 as a consequence of the estimates

- Hence, there is hope to get extra-regularity for constant viscosity ν (i.e., independent of temperature)
- Indeed we get

$$\mathbf{u}_t \in L^2(0,T;L^2(\Omega))$$
 and $\mathbf{u} \in L^\infty(0,T;H^1(\Omega)) \cap L^2(0,T;H^2(\Omega))$

Assumptions in 2D

- \blacksquare Constant viscosity $\nu=1$
- Constant specific heat $c_v = 1$ (in other words, $f(\theta) = -\theta \log \theta$)
- Power-like conductivity (for simplicity $\kappa(\theta)=\theta^2$)
- Periodic boundary conditions

Theorem

We can prove existence of at least one "strong" solution to system given by

$$\mathbf{u}_t + \mathbf{u} \cdot \nabla_x \mathbf{u} + \nabla_x p = \operatorname{div}(D\mathbf{u}) - \operatorname{div}(\nabla_x \varphi \otimes \nabla_x \varphi)$$
 (mom)

$$\varphi_t + \mathbf{u} \cdot \nabla_x \varphi = \Delta \mu \tag{CH1}$$

$$\mu = -\Delta \varphi + F'(\varphi) - \theta \tag{CH2}$$

$$\theta_t + \mathbf{u} \cdot \nabla_x \theta + \theta(\varphi_t + \mathbf{u} \cdot \nabla_x \varphi) - \Delta \theta^3 = |D\mathbf{u}|^2 + |\nabla_x \mu|^2$$
 (heat)

for finite-energy initial data, namely

$$\begin{split} \mathbf{u}_0 &\in H^1_{\mathrm{per}}(\Omega), \ \mathrm{div} \ \mathbf{u}_0 = 0, \\ \varphi_0 &\in H^3_{\mathrm{per}}(\Omega), \\ \theta_0 &\in H^1_{\mathrm{per}}(\Omega), \ \theta_0 > 0 \ \textit{a.e.}, \ \log \theta_0 \in L^1(\Omega) \end{split}$$

- Is the proof just a standard regularity argument? NO!
- The main issue is the estimation of $|\nabla_x \mu|^2$ in (heat). From the previous a-priori estimate, this is only in L^1
- If one differentiates the Cahn-Hilliard system:

$$(CH1)_t \times (-\Delta)^{-1} \varphi_t$$

$$\varphi_{tt} + \mathbf{u}_t \cdot \nabla_x \varphi + \mathbf{u} \cdot \nabla_x \varphi_t = \Delta \mu_t \quad \times (-\Delta)^{-1} \varphi_t$$

 \blacksquare plus (CH2)_t $\times \varphi_t$

$$\mu_t = -\Delta \varphi_t + F''(\varphi)\varphi_t - \theta_t \quad \boxed{\times \varphi_t}$$

then one faces the term $\theta_t \varphi_t$ and no estimate is available for θ_t

lacksquare Only possibility, to **test** (heat) **by** φ_t

$$\theta_t + \mathbf{u} \cdot \nabla_x \theta + \theta(\varphi_t + \mathbf{u} \cdot \nabla_x \varphi) - \Delta \theta^3 = |D\mathbf{u}|^2 + |\nabla_x \mu|^2 \times \varphi_t$$

to let it disappear

Try (CH1)_t $\times (-\Delta)^{-1} \varphi_t$

$$\varphi_{tt} + \mathbf{u}_t \cdot \nabla_x \varphi + \mathbf{u} \cdot \nabla_x \varphi_t = \Delta \mu_t \times (-\Delta)^{-1} \varphi_t$$

 \blacksquare plus (CH2)_t $\times \varphi_t$

$$\mu_t = -\Delta \varphi_t + F''(\varphi)\varphi_t - \theta_t \quad \times \varphi_t$$

 \blacksquare plus (heat) $\times (\theta^3 + \varphi_t)$

$$\theta_t + \mathbf{u} \cdot \nabla_x \theta + \theta(\varphi_t + \mathbf{u} \cdot \nabla_x \varphi) - \Delta \theta^3 = |D\mathbf{u}|^2 + |\nabla_x \mu|^2 \times (\theta^3 + \varphi_t)$$

getting

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\|\nabla_x \mu\|_{L^2}^2 + \|\theta\|_{L^4}^4 \right) + \|\varphi_t\|_{H^1}^2 + \|\theta^3\|_{H^1}^2 \le c \int_{\Omega} |\nabla_x \mu|^2 |\varphi_t + \theta^3| \, \mathrm{d}x + \text{l.o.t.}$$

where l.o.t. can be easily handled

Having the inequality

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\|\nabla_x \mu\|_{L^2}^2 + \|\theta\|_{L^4}^4 \right) + \|\varphi_t\|_{H^1}^2 + \|\theta^3\|_{H^1}^2 \leq c \int_{\Omega} |\nabla_x \mu|^2 |\varphi_t + \theta^3| \, \mathrm{d}x + \text{l.o.t.}$$

- lacksquare one has now to deal with $|
 abla_x \mu|^2 |arphi_t + heta^3|$
- The only way to control it seems the following one:

$$\int_{\Omega} |\varphi_t + \theta^3 ||\nabla_x \mu|^2 \le ||\varphi_t + \theta^3||_{H^1} |||\nabla_x \mu|^2 ||_{(H^1)'}$$

lacksquare In 2D we have that $L^p\subset (H^1)'$ for all p>1. But, then, one goes on with

$$\leq \epsilon \|\varphi_t + \theta^3\|_{H^1}^2 + c_{\epsilon} \|\nabla_x \mu\|_{L^{2p}}^4$$

which is bad!

We know, however, that

$$||v||_{L^q} \le cq^{1/2}||v||_{H^1}$$
 for all $v \in H^1(\Omega), q < \infty$

Passing to the dual inequality, we infer

$$\|\xi\|_{(H^1)^*} \le cq^{1/2} \|\xi\|_{L^p} \quad \text{for all } \xi \in L^p(\Omega), p > 1, q = p^*$$

Interpolating and optimizing w.r.t. q, we arrive at

$$\|\xi\|_{(H^1)^*} \leq c\|\xi\|_{L^1} \big(1+\log^{1/2}\|\xi\|_{L^2}\big) \quad \text{for all } \xi \in L^2(\Omega)$$
 Applying the above to $\xi=|\nabla_x \mu|^2$, we get a differential inequality of the form

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\|\nabla_x \mu\|_{L^2}^2 + \|\theta\|_{L^4}^4 \right) + \|\varphi_t\|_{H^1}^2 + \|\theta^3\|_{H^1}^2 \le c \|\nabla_x \mu\|_{L^2}^2 \left(\|\nabla_x \mu\|_{L^2}^2 \log \|\nabla_x \mu\|_{L^2}^2 \right) + \dots$$

Hence, we get a global estimate thanks to a (generalized) Gronwall lemma

Work in progress and further developments

Uniqueness in 2D

Convergence to equilibria in 2D. Existence of attractors

Allen-Cahn-type models

■ Singular potentials in Cahn-Hilliard (or Allen-Cahn)

Non-isothermal nonlocal models

