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The motivation

B A non-isothermal model for the flow of a mixture of two
B viscous
B incompressible
B Newtonian fluids
B of equal density

B Avoid problems related to interface singularities
—> use a diffuse interface model
— the classical sharp interface replaced by a thin interfacial region

B A partial mixing of the macroscopically immiscible fluids is allowed
— ¢ is the order parameter, e.g. the concentration difference

B The original idea of diffuse interface model for fluids: HOHENBERG and HALPERIN, 77
= H-model
Later, GURTIN ET AL., '96: continuum mechanical derivation based on microforces

B Models of two-phase or two-component fluids are receiving growing attention (e.g.,
ABELS, BOYER, GARCKE, GRUN, GRASSELLI, LOWENGRUB, TRUSKINOVSKI, ...)
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The main aim of our contribution [Eleuteri, R., Schimperna, in preparation] 'Zﬁg’“é

e Including temperature dependence is a widely open issue
Difficulties: getting models which are at the same time thermodynamically consistent and
mathematically tractable

e Our idea: a weak formulation of the system as a combination of fotal energy balance plus
entropy production inequality =—> “Entropic formulation”

B This method has been recently proposed by [BULICEK-MALEK-FEIREISL, '09] for the
Navier-Stokes-Fourier system and has been proved to be effective to study e.g.

B nonisothermal models for phase transitions ([FEIREISL-PETZELTOVA-R., '09]) and

B the evolution of nematic liquid crystals ((FREMOND, FEIREISL, R., SCHIMPERNA,
ZARNESCU, '12,13])
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The state variables and physical asssumptions 'Zﬁf’g

B We want to describe the behavior of a mixture of two incompressible fluids of the same
density in terms of the following state variables

B u: macroscopic velocity (Navier-Stokes),
B p: pressure (Navier-Stokes),
B : order parameter (Cahn-Hilliard),
B . chemical potential (Cahn-Hilliard),
B 0: absolute temperature (Entropic formulation).
B We do not neglect convection and capillarity effects. We assume constant mobility and

smooth configuration potential in Cahn-Hilliard. We take temperature dependent

coefficients wherever possible. We assume the system being insulated from the exterior.
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The PDEs (equations and inequalities) 'Zﬁf’g

B a weak form of the momentum balance
u; +u-Veou+ Vep =div(v(0)Du) — div(Vee ® Vap), divu = 0;
B the Cahn-Hilliard system in /' (Q)’
prtu-Vep=Ap, p=—clp+ éF'(w) - 0;

B a weak form of the total energy balance
1, 2 1, 9 .
Ot §|u| +e|l+u-V, §\u| +e —|—d1v(pu—|—q—Su)

1 0
—div (eiVap + uVap) =0 where e = gF(go) + %|Vzgo|2 —|—/ co(s)ds;
1

B the weak form of the entropy production inequality

(A(B) + )¢ +u- Va(A(B)) + u - Vap — div (W)

0 1
> O Duf? 4 1Vl +

()

0
02 |Vz9|27 where A(H):/ L(S)ds.

1 S
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Modelling

B We start by specifying two functionals:

B the free energy U, related to the equilibrium state of the material, and

B the dissipation pseudo-potential ®, describing the processes leading to
dissipation of energy (i.e., transformation into heat)

B Then we impose the balances of momentum, configuration energy, and both of
internal energy and of entropy, in terms of these functionals

B The thermodynamical consistency of the model is then a direct consequence of the
solution notion
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Modelling: the free energy

The total free energy is given as a function of the state variables E = (6, ¢, V)

W(E) = [ (B)de, w(E) = £6) 8o+ IVl + (o)

B f(0) is related to the specific heat ¢, (8) = Q'(0) by Q(8) = f(0) — 6f'(6). In our
case we need ¢, (6) ~ c560° forsome § € (1/2,1)

B ¢ > (is related to the interfacial thickness

B we need F'(¢p) to be the classical smooth double well potential F'() ~ 1 (p? — 1)?
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Modelling: the dissipation potential 'Zﬁ@’g

The dissipation potential is taken as function of 0 E = (D, %, Vz0)and E

Q Dt

Dt
0 0 Do|?
= / (%)|Du|2 + I{oy (divu) + %|V19|2> dz + Hﬁf
Q H, ()

B Du= (V,u+ Viu)/2 the symmetric gradient

D) _
B o=

(-)t +u - V4 () the material derivative
m J: Hj(Q) — Hj () the Riesz isomorphism
(Ju,v) := ((u, v))H#(Q) = [, Vau - Vyvde,
Hu(Q)={£e H'(Q) : £:=1Q" [,&dx =0}
B v = v(0) > 0 the viscosity coefficient, kK = k(6) > 0 the heat conductivity
B Incompressibility: I, the indicator function of {0}: Ip = 0 if divu = 0, 400
otherwise)
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Modelling: the contraints and the dissipation potential

B The dissipation potential was taken as

_ Do _ Dy 1Dy
=9 (Du, D ,vze) = /Qq&(Du,VZG) dx+< J D

B If a time-dependent set of variables is given such that
B ae.in (0,7), U and P are finite
B uissuchthatu-n=0onT
B ¢ satisfies the mass conservation constraint (¢, z) = ¢(0,x) = @o(z)

then u is divergence-free and we get

D
?f:/(npt—i—u-vxgo)dm:()
Q Q
B Thenwe canset puyu := —J ' 22 sothat 22 = — Juu = Apy and we get

®(0E,E) = /95(515, E)dz, where $(0F,E) = ¢(6E,E) + %IVM#IQ

a.e.
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Modelling: Cahn-Hilliard 'Cff’g

B It is obtained (at least for no-flux b.c.'s) as the following gradient-flow problem
8Li(ﬂ),%¢. + 8L2#(Q),g;#‘l’ = O
where L;&(Q) ={6c L) : £:=|Q|7 [(€dz =0}, pp =0 — B0

B Combining the previous relations we then get

Dt on
B Applying the distributional Laplace operator to both hand sides and noting that

_ D 1 , [ - 0 _ .
g “”):eAgo—g(F(w—F/(w))w—e, 9 _gonT, 3(t) = 5

—AJ v =wvforany v € L%(12), we then arrive at the Cahn-Hilliard system with
Neumann hom. b.c. for ;. and ¢

OV U e T |
Dt—A,u, = sAnp—i—gF(ap) 0, 8n_8n_00nr (CahnHill)

where the auxiliary variable . takes the name of chemical potential
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Modelling: momentum balance

The Navier-Stokes system is obtained as a momentum balance by setting

Du . .
Df = +div(u®u) =divo, (momentum)
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Modelling: momentum balance 'Zﬁ@";

The Navier-Stokes system is obtained as a momentum balance by setting

%l: =u, + div(u®u) = div (¢’ + "), (momentum)

where the stress o is split into its

B dissipative part

a._ 99 _ o
o= aDu—l/(O)Du pl, divu=0,

representing kinetic energy which dissipates (i.e. is transformed into heat) due to

viscosity, and its

nd

B non-dissipative part 0" to be determined later in agreement with Thermodynamics
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Nonlocal internal energy balance

The balance of internal energy takes the form

2 nd 61/)
ﬁ-f—leQ—I/( )| Dul® + o .Du—i—B——i—W Vx Dr —|—

where e = ¢ — O1py, B = B"® + B and
o 1 _1 [ Dy
nd _ YY¥ = d _ _ 1 e
B = % EF() 6, B —GLQ#(Q)’%fé_J ( t)

On the right hand side there appears a new (with respect to the standard theory of [FREMOND,
’02]) term balancing the nonlocal dependence of the last term in the pseudopotential
of dissipation ¢

<I>:<I><Du —) /¢d +<D‘p J_lgf>

It will result from the Second Principle of Thermodynamics that fﬂ N(z)dz =0,in

agreement with natural expectations
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The Second Law of Thermodynamics

nd

To deduce the expressions for ¢ and N, we impose validity of the Clausius-Duhem

9(%‘; + div (%))zo

where e = i + s, being s = —1)p the entropy density and we get

inequality in the form

n _ 1 _
0" = Ve @ Vap, N = A(-p)?

and the internal energy balance can be rewritten as
Dy . 2 2
(QUO)): + - V. Q0) + 017 — div(x(0)V.6) = v(0)| Duf* + Vs
where Q(0) = f(0) — 0f'(0) and Q'(0) =: c,(0)

The dissipation terms on the right hand side are in perfect agreement with ®

@:/&dx, where $:¢+%|Vz,u|2
Q
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Entropic solutions: Total Energy balance and Entropy inequality

Following [BULICEK, FEIREISL, & MALEK], we replace the pointwise internal energy balance by

the total energy balance

2
(0 +u-Vy) (% + e) + div (pu — £(0) V26 — (v(0) Du)u)
= div (p¢tVap + uVap) (energy)

with the internal energy
1
e=F(p) + §\Vz¢|2 +Q(0) Q'(0) =cu(9)
and the entropy inequality

(A(0) + )¢ +u- Vi (A(O) + @) — div (W) (entropy)
k(0)

02

[
IV.0]%, where A(e):/ 10

I/(a) 2 1 2
> —==\|D — |V
g |Dul” + 0|V wul” + s
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The PDEs (equations and inequalities) 'Zﬁf’g

B a weak form of the momentum balance (in distributional sense)
w +u-Veu+ Vep =div(v(0)Du) — div(Vep @ Vap), divu = 0;
B the Cahn-Hilliard system in /' (Q)’
pr+u-Vap =Ap, p=—Ap+F(p)—0;

B a weak form of the total energy balance (in distributional sense)

1
Ot <§|u\2 —I—e) +u- (f|u| +e) + div (pu—|—q—Su)

1 0
—div (¢t Vap 4+ uVap) =0 where e = F(p) + §|Vz<p|2 —|—/ co(s)ds;
1

B the weak form of the entropy production inequality

(AB) + )i +u- Vo(A(D)) +u- Vap — div (@)
- %'Dlﬂ |Vzﬂ|2 + He(f) |Vg;9|27 where A(9) = /19 CUT(S) ds.

E. Rocca - DFG-CNRS Workshop Two-Phase Fluid Flows. Modeling, Analysis, and Computational W
Methods, Paris, February 26, 2014 - Page 16 (27) AS)



Assumptions on the data and boundary conditions 'Zﬁf’g

B In order to get a tractable system in 3D, we need to specify assumptions on coefficients in
a careful way:
B The viscosity v/(6) is assumed smooth and bounded
B The specific heat ¢, (0) ~ 0°,1/2 < § < 1
B The heat conductivity x(0) ~ 1+ 6°, 5 > 2

B The potential F(¢) = %(302 _ 1)2

B Concerning B.C.s, our results are proved for no-flux conditions for 6, , and 1 and
complete slip conditions for u

u-n|, =0 (the fluid cannot exit £2, it can move tangentially to I")

[Sn] x n;, =0, whereS =wv(f)Du (exclude friction effects with the boundary)

They can be easily extended to the case of periodic B.C.s for all unknowns
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Existence of global in time solutions . ’Cff’g

We can prove existence of at least one global in time weak solution (u, ¢, u, 0)

ue L®(0,T; L*(;R?) N L*(0,T; Vy)

© e L™(0,T; H(Q)) N L*(0,T; H*(Q)) N H'(0,T; H' ()")
pe L0, T; H'(Q) N LS ((0,T) x Q)

0 € L>=(0,T; LT (Q)) n LP(0, T; L**(Q)) n L*(0, T; H' (Q))
0>0 aein(0,T)xQ, loghe L*(0,T;H"())

to system given by (momentum), (CahnHill), (entropy) and (energy), in distributional sense and
for finite-energy initial data

w € L*(Q), divug =0, ¢o€ H(Q), 6 L°THQ), 6 >0 ae
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A priori bounds

B Existence proof based on a classical a-priori estimates — compactness scheme
B The basic information is contained in the energy and entropy relations

B Note that the power-like growth of the heat conductivity and of the specific heat is
required in order to provide sufficient summability of the temperature

Is this sufficient to pass to the limit?

H The total energy balance contains some nasty extra terms ¢V, + uVap. In
particular, ¢ lies only in some negative order space (cf. (CahnHill))

B Using (CahnHill) and integrating by parts carefully the bad terms tranform into
— Ap® +div ((u- Vo) Vap)

+div(Vap - VeVap) — divdiv(Vep @ Vap)

B The above terms can be controlled by getting some extra-integrability of ¢ and  from
(CahnHill). To this aim having a “smooth” potential F' is crucial!

E. Rocca - DFG-CNRS Workshop Two-Phase Fluid Flows. Modeling, Analysis, and Computational W
Methods, Paris, February 26, 2014 - Page 19 (27) AS)



What'’s better in 2D?

B Is it possible to say something more in the 2D-case?

B In particular, it would be interesting to see if one might deal with “strong” solutions.
Moreover, we would like to drop some restriction on coefficients

B Let us make one test: in 2D the “extra stress” div (V¢ @ V) in (momentum)
w +u-Vyu+ Vep =div(Du) — div (Ve @ Vi)
liesin L? asa consequence of the estimates

B Hence, there is hope to get extra-regularity for constant viscosity v (i.e., independent of
temperature)

B Indeed we get
u, € L2(0,T; L3(Q)) andu € L=(0,T; H(Q)) N L*(0,T; H*(Q))
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Assumptions in 2D

B Constant viscosity v = 1
B Constant specific heat ¢, = 1 (in other words, f(0) = —6log 6)
B Power-like conductivity (for simplicity x(8) = 6?)

B Periodic boundary conditions
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Main result in 2D

We can prove existence of at least one “strong” solution fo system given by
u +u-Vyu+ Vep =div(Du) — div (Vae ® Vi)
pr+u-Vep =Ap
p=—Ap+ F'(p) -0
0 +u- V04 0(p¢ + u- Vup) — AG® = |Dul? 4 |Vl

for finite-energy initial data, namely

ug € per(Q), divup = 0,
("200] S Hper(Q)
0o € Hper(Q), 60 >0 ae, loghy € L'(Q)

Lot

(mom)

(CH1)

(CH2)

(heat)
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2D: Troubles

B Is the proof just a standard regularity argument? NO!

B The main issue is the estimation of \Vm/z,\Q in (heat). From the previous a-priori estimate,

this is only in L*
B [f one differentiates the Cahn-Hilliard system:

B (CH1), x(—A) 'y
Ot Vep+u-Vapr = Ay | X(—A) "y
W plus (CH2); Xy
e = —Apr + F"(0)pr — 00 | X
then one faces the term 0+ and no estimate is available for 6
B Only possibility, to test (heat) by ¢
Or +u- Vi + 0(pr +u-Vaep) — AO° = |Dul® + |[V.ul” | xe:

to let it disappear
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The main estimate 'Zﬁ@"*é

B Try (CH1); x(—A) "ty

et +u - Voo +u-Vapr = Ape x (—A) 'y
B plus (CH2), XYt

e = —Aps + F'(9)pr — 00 X 4
B plus (heat)x (8% + ;)

O +u- Vil +0(pr +u-Vap) — AG® = [Dul> + |[Vopul”  x (0° + 1)
B getting

d ’ .
< (I cnlEa + 180E8) + el + 16°1n < c [ [9anllin + 67| do 4108
Q

where l.o0.t. can be easily handled
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Almost to the right idea...

Having the inequality

d ' .
5 (IVenlzz +116124) + lleellzn + 6% < C/ Vaul®|oe +0°| dz + Lot
Q

B one has now to deal with |V, 2|, + 07

B The only way to control it seems the following one:
[ e+ Tl < N+ 6 19 1,
B In 2D we have that L” C (H')’ for allp > 1. But, then, one goes on with
<ellor + 05 + e[ Vol

which is bad!
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The main idea: a dual Yudovich trick and a regularity estimate 'Zﬁ@";

B We know, however, that
lvlla < cqg"/?|vl|ln forallv e H(),q < oo
B Passing to the dual inequality, we infer
I€llrye < cq?[l€llLe forallé € LP(Q),p > 1,4 =p°
B Interpolating and optimizing w.r.t. g, we arrive at

€y < Cl£§“L1 (1+ log'/? [€]12) forallé € L* ()
Applying the above to £ = |V ul|*, we get a differential inequality of the form

d f
& (IVarell 72 +101174) + oz + 16° 13 < el Vol 72 (I Vaplliz log [ VaplZ2) + ...

Hence, we get a global estimate thanks to a (generalized) Gronwall lemma
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Work in progress and further developments

WORK NPROGRESS

B Uniqueness in 2D

WORK N PROGRESS.

B Convergence to equilibria in 2D. Existence of attractors
B Allen-Cahn-type models E
B Singular potentials in Cahn-Hilliard (or Allen-Cahn) E

B Non-isothermal nonlocal models E
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