Non-isothermal two phase flows of incompressible fluids

Elisabetta Rocca – joint work with M. Eleuteri (Milano) and G. Schimperna (Pavia)

Supported by the FP7-IDEAS-ERC-StG Grant “EntroPhase”
Outline

- The motivation
- The PDEs (equations and inequalities)
- The modelling
- The analytical results in 3D - [Eleuteri, R., Schimperna, WIAS preprint no. 1920 (2014)]
- The expected improvements in 2D
- Some open related problems
The motivation

- A non-isothermal model for the flow of a mixture of two
 - viscous
 - incompressible
 - Newtonian fluids
 - of equal density

- Avoid problems related to interface singularities
 \[\implies \text{use a diffuse interface model} \]
 \[\implies \text{the classical sharp interface replaced by a thin interfacial region} \]

- A partial mixing of the macroscopically immiscible fluids is allowed
 \[\implies \phi \text{ is the order parameter, e.g. the concentration difference} \]

- The original idea of diffuse interface model for fluids: Hohenberg and Halperin, ’77
 \[\implies \text{H-model} \]
 Later, Gurtin et al., ’96: continuum mechanical derivation based on microforces

- Models of two-phase or two-component fluids are receiving growing attention (e.g., Abels, Boyer, Garcke, Grün, Grasselli, Lowengrub, Truskinovski, ...)
The main aim of our contribution [Eleuteri, R., Schimpena, in preparation]

- Including temperature dependence is a widely open issue
 Difficulties: getting models which are at the same time thermodynamically consistent and mathematically tractable

- Our idea: a weak formulation of the system as a combination of total energy balance plus entropy production inequality \(\Rightarrow \) “Entropic formulation”

This method has been recently proposed by [Bulíček-Málek-Feireisl, ’09] for the Navier-Stokes-Fourier system and has been proved to be effective to study e.g.

- nonisothermal models for phase transitions ([Feireisl-Petzeltová-R., ’09]) and
- the evolution of nematic liquid crystals ([Frémont, Feireisl, R., Schimperna, Zarnescu, ’12,’13])
The state variables and physical assumptions

- We want to describe the behavior of a mixture of two incompressible fluids of the same density in terms of the following state variables
 - \(u \): macroscopic velocity (Navier-Stokes),
 - \(p \): pressure (Navier-Stokes),
 - \(\varphi \): order parameter (Cahn-Hilliard),
 - \(\mu \): chemical potential (Cahn-Hilliard),
 - \(\theta \): absolute temperature (Entropic formulation).

- We do not neglect convection and capillarity effects. We assume constant mobility and smooth configuration potential in Cahn-Hilliard. We take temperature dependent coefficients wherever possible. We assume the system being insulated from the exterior.
The PDEs (equations and inequalities)

- A weak form of the momentum balance
 \[u_t + u \cdot \nabla x u + \nabla x p = \text{div}(\nu(\theta) Du) - \text{div}(\nabla x \varphi \otimes \nabla x \varphi), \quad \text{div} u = 0; \]

- The Cahn-Hilliard system in $H^1(\Omega)'$
 \[\varphi_t + u \cdot \nabla x \varphi = \Delta \mu, \quad \mu = -\varepsilon \Delta \varphi + \frac{1}{\varepsilon} F'(\varphi) - \theta; \]

- A weak form of the total energy balance
 \[
 \partial_t \left(\frac{1}{2} |u|^2 + e \right) + u \cdot \nabla x \left(\frac{1}{2} |u|^2 + e \right) + \text{div} \left(p u + q - S u \right) \\
 - \text{div} \left(\varepsilon \varphi_t \nabla x \varphi + \mu \nabla x \mu \right) = 0 \quad \text{where} \quad e = \frac{1}{\varepsilon} F(\varphi) + \frac{\varepsilon}{2} |\nabla x \varphi|^2 + \int_1^\theta c_v(s) \, ds;
 \]

- The weak form of the entropy production inequality
 \[
 (\Lambda'(\theta) + \varphi)_t + u \cdot \nabla x (\Lambda(\theta)) + u \cdot \nabla x \varphi - \text{div} \left(\frac{\kappa(\theta) \nabla x \theta}{\theta} \right) \\
 \geq \frac{\nu(\theta)}{\theta} |Du|^2 + \frac{1}{\theta} |\nabla x \mu|^2 + \frac{\kappa(\theta)}{\theta^2} |\nabla x \theta|^2, \quad \text{where} \quad \Lambda'(\theta) = \int_1^\theta \frac{c_v(s)}{s} \, ds.
 \]
We start by specifying two functionals:

- the **free energy** Ψ, related to the equilibrium state of the material, and
- the **dissipation pseudo-potential** Φ, describing the processes leading to dissipation of energy (i.e., transformation into heat)

Then we impose the balances of **momentum**, **configuration energy**, and both of **internal energy** and of **entropy**, in terms of these functionals

The **thermodynamical consistency** of the model is then a direct consequence of the solution notion
The **total free energy** is given as a function of the state variables \(E = (\theta, \varphi, \nabla_x \varphi) \)

\[
\Psi(E) = \int_{\Omega} \psi(E) \, dx, \quad \psi(E) = f(\theta) - \theta \varphi + \frac{\varepsilon}{2} |\nabla_x \varphi|^2 + \frac{1}{\varepsilon} F(\varphi)
\]

- \(f(\theta) \) is related to the specific heat \(c_v(\theta) = Q'(\theta) \) by \(Q(\theta) = f(\theta) - \theta f'(\theta) \). In our case we need \(c_v(\theta) \sim c_\delta \theta^\delta \) for some \(\delta \in (1/2, 1) \)

- \(\varepsilon > 0 \) is related to the interfacial thickness

- we need \(F(\varphi) \) to be the classical smooth double well potential \(F(\varphi) \sim \frac{1}{4}(\varphi^2 - 1)^2 \)
Modelling: the dissipation potential

The **dissipation potential** is taken as function of $\delta E = (D\mathbf{u}, \frac{D\varphi}{Dt}, \nabla_x \theta)$ and E

$$
\Phi(\delta E, E) = \int_\Omega \phi(D\mathbf{u}, \nabla_x \theta) \, dx + \left\langle \frac{D\varphi}{Dt}, J^{-1} \frac{D\varphi}{Dt} \right\rangle
$$

$$
= \int_\Omega \left(\frac{\nu(\theta)}{2} |D\mathbf{u}|^2 + I_{\{0\}}(\text{div } \mathbf{u}) + \frac{\kappa(\theta)}{2\theta} |\nabla \theta|^2 \right) \, dx + \left\| \frac{D\varphi}{Dt} \right\|_{H_1^1(\Omega)'}^2
$$

- $D\mathbf{u} = (\nabla_x \mathbf{u} + \nabla_t^t \mathbf{u})/2$ the symmetric gradient
- $\frac{D(\cdot)}{Dt} = (\cdot)_t + \mathbf{u} \cdot \nabla_x (\cdot)$ the material derivative
- $J : H_1^1(\Omega) \to H_1^1(\Omega)'$ the **Riesz isomorphism**

$$
\langle Ju, v \rangle := ((u, v))_{H_1^1(\Omega)} := \int_\Omega \nabla_x u \cdot \nabla_x v \, dx,
$$

$$
H_1^1(\Omega) = \{ \xi \in H^1(\Omega) : \bar{\xi} := |\Omega|^{-1} \int_\Omega \xi \, dx = 0 \}
$$

- $\nu = \nu(\theta) > 0$ the viscosity coefficient, $\kappa = \kappa(\theta) > 0$ the heat conductivity
- **Incompressibility**: I_0 the indicator function of $\{0\}$: $I_0 = 0$ if $\text{div } \mathbf{u} = 0$, $+\infty$ otherwise
The dissipation potential was taken as

$$\Phi = \Phi \left(D\mathbf{u}, \frac{D\varphi}{Dt}, \nabla_x \theta \right) = \int_{\Omega} \phi(D\mathbf{u}, \nabla_x \theta) \, dx + \left< \frac{D\varphi}{Dt}, J^{-1} \frac{D\varphi}{Dt} \right>$$

If a time-dependent set of variables is given such that

- a.e. in $(0, T)$, Ψ and Φ are finite
- \mathbf{u} is such that $\mathbf{u} \cdot \mathbf{n} = 0$ on Γ
- φ satisfies the mass conservation constraint $\varphi(t, x) = \varphi(0, x) = \varphi_0(x)$ a.e.

then \mathbf{u} is divergence-free and we get

$$\int_{\Omega} \frac{D\varphi}{Dt} = \int_{\Omega} (\varphi_t + \mathbf{u} \cdot \nabla_x \varphi) \, dx = 0$$

Then we can set $\mu_#:=-J^{-1} \frac{D\varphi}{Dt}$, so that $\frac{D\varphi}{Dt} = -J \mu_# = \Delta \mu_#$ and we get

$$\Phi(\delta E, E) = \int_{\Omega} \tilde{\phi}(\delta E, E) \, dx, \quad \text{where} \quad \tilde{\phi}(\delta E, E) = \phi(\delta E, E) + \frac{1}{2} |\nabla_x \mu_#|^2$$
It is obtained (at least for no-flux b.c.'s) as the following gradient-flow problem

\[\partial_{L^2_#(\Omega), \frac{D\varphi}{Dt}} \Phi + \partial_{L^2_#(\Omega), \varphi_#} \Psi = 0 \]

where \(L^2_#(\Omega) = \{ \xi \in L^2(\Omega) : \bar{\xi} := |\Omega|^{-1} \int_{\Omega} \xi \, dx = 0 \} \), \(\varphi_# = \varphi - \bar{\varphi}_0 \)

Combining the previous relations we then get

\[J^{-1} \left(\frac{D\varphi}{Dt} \right) = \varepsilon \Delta \varphi - \frac{1}{\varepsilon} \left(F'(\varphi) - F'(\bar{\varphi}) \right) + \theta - \bar{\theta}, \quad \frac{\partial \varphi}{\partial n} = 0 \text{ on } \Gamma, \quad \varphi(t) = \bar{\varphi}_0 \]

Applying the distributional Laplace operator to both hand sides and noting that

\[-\Delta J^{-1} v = v \text{ for any } v \in L^2_#(\Omega), \]

we then arrive at the Cahn-Hilliard system with Neumann hom. b.c. for \(\mu \) and \(\varphi \)

\[\frac{D\varphi}{Dt} = \Delta \mu, \quad \mu = -\varepsilon \Delta \varphi + \frac{1}{\varepsilon} F'(\varphi) - \theta, \quad \frac{\partial \varphi}{\partial n} = \frac{\partial \mu}{\partial n} = 0 \text{ on } \Gamma \]

(CahnHill)

where the auxiliary variable \(\mu \) takes the name of chemical potential.
The **Navier-Stokes system** is obtained as a momentum balance by setting

\[
\frac{Du}{Dt} = u_t + \text{div}(u \otimes u) = \text{div} \sigma,
\]

(momentum)
The **Navier-Stokes system** is obtained as a momentum balance by setting

\[
\frac{Du}{Dt} = u_t + \text{div}(u \otimes u) = \text{div} \left(\sigma^d + \sigma^{nd} \right),
\]

where the stress \(\sigma\) is split into its

- **dissipative part**

\[
\sigma^d := \frac{\partial \phi}{\partial Du} = \nu(\theta) Du - p I, \quad \text{div } u = 0,
\]

representing kinetic energy which **dissipates** (i.e. is transformed into heat) due to viscosity, and its

- **non-dissipative part** \(\sigma^{nd}\) to be determined later in agreement with Thermodynamics
Nonlocal internal energy balance

The balance of internal energy takes the form

\[
\frac{De}{Dt} + \text{div } q = \nu(\theta)|Du|^2 + \sigma^{nd} : Du + B \frac{D\varphi}{Dt} + \frac{\partial \psi}{\partial \nabla_x \varphi} \cdot \nabla_x \frac{D\varphi}{Dt} + [N]
\]

where \(e = \psi - \theta \psi_\theta\), \(B = B^{nd} + B^d\) and

\[
B^{nd} = \frac{\partial \psi}{\partial \varphi} = \frac{1}{\varepsilon} F'(\varphi) - \theta, \quad B^d = \partial_{L^2(\Omega)} \Phi = J^{-1} \left(\frac{D\varphi}{Dt} \right)
\]

On the right hand side there appears a new (with respect to the standard theory of [FRÉMOND, ’02]) term \([N]\) balancing the nonlocal dependence of the last term in the pseudopotential of dissipation \(\Phi\)

\[
\Phi = \Phi \left(Du, \frac{D\varphi}{Dt} \right) = \int_\Omega \phi \, dx + \left\langle \frac{D\varphi}{Dt}, J^{-1} \frac{D\varphi}{Dt} \right\rangle
\]

It will result from the Second Principle of Thermodynamics that \(\int_\Omega N(x) \, dx = 0\), in agreement with natural expectations.
The Second Law of Thermodynamics

To deduce the expressions for σ^{nd} and N, we impose validity of the Clausius-Duhem inequality in the form

$$\theta \left(\frac{Ds}{Dt} + \text{div} \left(\frac{q}{\theta} \right) \right) \geq 0$$

where $e = \psi + \theta s$, being $s = -\psi_\theta$ the entropy density and we get

$$\sigma^{nd} = -\varepsilon \nabla_x \varphi \otimes \nabla_x \varphi, \quad N = \frac{1}{2} \Delta (\mu - \bar{\mu})^2$$

and the internal energy balance can be rewritten as

$$(Q(\theta))_t + \mathbf{u} \cdot \nabla_x Q(\theta) + \theta \frac{D\varphi}{Dt} - \text{div}(\kappa(\theta) \nabla_x \theta) = \nu(\theta) |D\mathbf{u}|^2 + |\nabla_x \mu|^2$$

where $Q(\theta) = f(\theta) - \theta f'(\theta)$ and $Q'(\theta) = c_v(\theta)$

The dissipation terms on the right hand side are in perfect agreement with Φ

$$\Phi = \int_\Omega \tilde{\phi} \, dx, \quad \text{where} \quad \tilde{\phi} = \phi + \frac{1}{2} |\nabla_x \mu|^2$$
Following [BULÍČEK, FEIREISL, & MÁLEK], we replace the pointwise internal energy balance by the **total energy balance**

\[
(\partial_t + u \cdot \nabla_x) \left(\frac{|u|^2}{2} + e \right) + \text{div} \left(pu - \kappa(\theta) \nabla_x \theta - (\nu(\theta) Du) u \right)
\]

\[
= \text{div} \left(\varphi_t \nabla_x \varphi + \mu \nabla_x \mu \right)
\]

(energy)

with the internal energy

\[
e = F(\varphi) + \frac{1}{2} |\nabla_x \varphi|^2 + Q(\theta) \quad Q'(\theta) = c_v(\theta)
\]

and the **entropy inequality**

\[
(\Lambda(\theta) + \varphi)_t + u \cdot \nabla_x (\Lambda(\theta) + \varphi) - \text{div} \left(\frac{\kappa(\theta) \nabla_x \theta}{\theta} \right)
\]

\[
\geq \frac{\nu(\theta)}{\theta} |Du|^2 + \frac{1}{\theta} |\nabla_x \mu|^2 + \frac{\kappa(\theta)}{\theta^2} |\nabla_x \theta|^2,
\]

where \(\Lambda(\theta) = \int_1^\theta \frac{c_v(s)}{s} ds \sim \theta^\delta \)
The PDEs (equations and inequalities)

- a weak form of the momentum balance (in distributional sense)
 \[u_t + u \cdot \nabla u + \nabla p = \text{div}(\nu(\theta) Du) - \text{div}(\nabla \varphi \otimes \nabla \varphi), \quad \text{div } u = 0; \]

- the Cahn-Hilliard system in \(H^1(\Omega)' \)
 \[\varphi_t + u \cdot \nabla \varphi = \Delta \mu, \quad \mu = -\Delta \varphi + F'(\varphi) - \theta; \]

- a weak form of the total energy balance (in distributional sense)
 \[\partial_t \left(\frac{1}{2} |u|^2 + e \right) + u \cdot \nabla \left(\frac{1}{2} |u|^2 + e \right) + \text{div} \left(pu + q - S u \right) \]
 \[- \text{div} \left(\varphi_t \nabla \varphi + \mu \nabla \mu \right) = 0 \quad \text{where } \quad e = F(\varphi) + \frac{1}{2} |\nabla \varphi|^2 + \int_1^\theta c_v(s) \, ds; \]

- the weak form of the entropy production inequality
 \[(\Lambda(\theta) + \varphi)_t + u \cdot \nabla \left(\Lambda(\theta) \right) + u \cdot \nabla \varphi - \text{div} \left(\frac{\kappa(\theta) \nabla \theta}{\theta} \right) \]
 \[\geq \frac{\nu(\theta)}{\theta} |Du|^2 + \frac{1}{\theta} |\nabla \mu|^2 + \frac{\kappa(\theta)}{\theta^2} |\nabla \theta|^2, \quad \text{where } \Lambda(\theta) = \int_1^\theta \frac{c_v(s)}{s} \, ds. \]
Assumptions on the data and boundary conditions

In order to get a tractable system in 3D, we need to specify assumptions on coefficients in a careful way:

- The viscosity $\nu(\theta)$ is assumed smooth and bounded
- The specific heat $c_v(\theta) \sim \theta^\delta, \ 1/2 < \delta < 1$
- The heat conductivity $\kappa(\theta) \sim 1 + \theta^\beta, \ \beta \geq 2$
- The potential $F(\varphi) = \frac{1}{4}(\varphi^2 - 1)^2$

Concerning B.C.’s, our results are proved for no-flux conditions for θ, φ, and μ and complete slip conditions for u

$$u \cdot n|_\Gamma = 0 \quad \text{(the fluid cannot exit } \Omega, \text{ it can move tangentially to } \Gamma)$$
$$[Sn] \times n|_\Gamma = 0, \quad \text{where } S = \nu(\theta) Du \quad \text{(exclude friction effects with the boundary)}$$

They can be easily extended to the case of periodic B.C.’s for all unknowns
Existence of global in time solutions

Theorem

We can prove existence of at least one global in time weak solution \((u, \varphi, \mu, \theta)\)

\[
\begin{align*}
 u &\in L^\infty(0, T; L^2(\Omega; \mathbb{R}^3)) \cap L^2(0, T; V_n) \\
 \varphi &\in L^\infty(0, T; H^1(\Omega)) \cap L^2(0, T; H^3(\Omega)) \cap H^1(0, T; H^1(\Omega)') \\
 \mu &\in L^2(0, T; H^1(\Omega)) \cap L^{\frac{14}{5}}((0, T) \times \Omega) \\
 \theta &\in L^\infty(0, T; L^{\delta+1}(\Omega)) \cap L^{\beta}(0, T; L^{3\beta}(\Omega)) \cap L^2(0, T; H^1(\Omega)) \\
 \theta &> 0 \ a.e. \ in \ (0, T) \times \Omega, \ \log \theta \in L^2(0, T; H^1(\Omega))
\end{align*}
\]

to system given by (momentum), (CahnHill), (entropy) and (energy), in distributional sense and for finite-energy initial data

\[
\begin{align*}
 u_0 &\in L^2(\Omega), \ \text{div} \ u_0 = 0, \ \varphi_0 \in H^1(\Omega), \ \theta_0 \in L^{\delta+1}(\Omega), \ \theta_0 > 0 \ a.e.
\end{align*}
\]
A priori bounds

- Existence proof based on a classical **a-priori estimates** – **compactness** scheme
- The basic information is contained in the **energy** and **entropy** relations
- Note that the **power-like** growth of the heat conductivity and of the specific heat is required in order to provide sufficient **summability** of the temperature

Is this sufficient to pass to the limit?

- The **total energy balance** contains some nasty extra terms $\varphi_t \nabla_x \varphi + \mu \nabla_x \mu$. In particular, φ_t lies only in some **negative order** space (cf. (CahnHill))
- Using (CahnHill) and integrating by parts carefully the bad terms transform into

 $$- \Delta \mu^2 + \text{div} \left((u \cdot \nabla_x \varphi) \nabla_x \varphi \right) + \text{div} (\nabla_x \mu \cdot \nabla_x \nabla_x \varphi) - \text{div} \text{div} (\nabla_x \mu \otimes \nabla_x \varphi)$$

- The above terms can be controlled by getting some **extra-integrability** of φ and μ from (CahnHill). To this aim having a **“smooth” potential F** is crucial!
What’s better in 2D?

- Is it possible to say something more in the 2D-case?

- In particular, it would be interesting to see if one might deal with “strong” solutions. Moreover, we would like to drop some restriction on coefficients.

- Let us make one test: in 2D the “extra stress” \(\text{div}(\nabla_x \varphi \otimes \nabla_x \varphi) \) in (momentum)

\[
\begin{align*}
 u_t + u \cdot \nabla_x u + \nabla_x p &= \text{div}(D\!u) - \text{div}(\nabla_x \varphi \otimes \nabla_x \varphi)
\end{align*}
\]

lies in \(L^2 \) as a consequence of the estimates.

- Hence, there is hope to get extra-regularity for constant viscosity \(\nu \) (i.e., independent of temperature).

- Indeed we get

\[
\begin{align*}
 u_t &\in L^2(0, T; L^2(\Omega)) \text{ and } u \in L^{\infty}(0, T; H^1(\Omega)) \cap L^2(0, T; H^2(\Omega))
\end{align*}
\]
Assumptions in 2D

- Constant viscosity $\nu = 1$
- Constant specific heat $c_v = 1$ (in other words, $f(\theta) = -\theta \log \theta$)
- Power-like conductivity (for simplicity $\kappa(\theta) = \theta^2$)
- Periodic boundary conditions
Main result in 2D

Theorem

We can prove existence of at least one "strong" solution to system given by

\[
\begin{align*}
\mathbf{u}_t + \mathbf{u} \cdot \nabla_x \mathbf{u} + \nabla_x p &= \text{div}(D\mathbf{u}) - \text{div} (\nabla_x \varphi \otimes \nabla_x \varphi) \quad \text{(mom)} \\
\varphi_t + \mathbf{u} \cdot \nabla_x \varphi &= \Delta \mu \quad \text{(CH1)} \\
\mu &= -\Delta \varphi + F'(\varphi) - \theta \quad \text{(CH2)} \\
\theta_t + \mathbf{u} \cdot \nabla_x \theta + \theta (\varphi_t + \mathbf{u} \cdot \nabla_x \varphi) - \Delta \theta^3 &= |D\mathbf{u}|^2 + |\nabla_x \mu|^2 \quad \text{(heat)}
\end{align*}
\]

for finite-energy initial data, namely

\[
\begin{align*}
\mathbf{u}_0 &\in H^1_{\text{per}}(\Omega), \quad \text{div} \mathbf{u}_0 = 0, \\
\varphi_0 &\in H^3_{\text{per}}(\Omega), \\
\theta_0 &\in H^1_{\text{per}}(\Omega), \quad \theta_0 > 0 \ \text{a.e.}, \quad \log \theta_0 \in L^1(\Omega)
\end{align*}
\]
2D: Troubles

- Is the proof just a standard regularity argument? **NO!**
- The main issue is the estimation of $|\nabla_x \mu|^2$ in (heat). From the previous a-priori estimate, this is **only in L^1**.
- If one differentiates the Cahn-Hilliard system:
 - (CH1)$_t \times (\nabla)^{-1} \varphi_t$

 $$\varphi_{tt} + u_t \cdot \nabla \varphi + u \cdot \nabla \varphi_t = \Delta \mu_t \times (\nabla)^{-1} \varphi_t$$

 - plus (CH2)$_t \times \varphi_t$

 $$\mu_t = -\Delta \varphi_t + F''(\varphi) \varphi_t - \theta_t \times \varphi_t$$

 then one faces the term $\theta_t \varphi_t$ and no estimate is available for θ_t
- Only possibility, to **test** (heat) **by** φ_t

 $$\theta_t + u \cdot \nabla \theta + \theta(\varphi_t + u \cdot \nabla \varphi) - \Delta \theta^3 = |D u|^2 + |\nabla_x \mu|^2 \times \varphi_t$$

 to let it disappear
The main estimate

- Try $(CH1)_t \times (-\Delta)^{-1} \varphi_t$

\[\varphi_{tt} + \mathbf{u}_t \cdot \nabla_x \varphi + \mathbf{u} \cdot \nabla_x \varphi_t = \Delta \mu_t \times (-\Delta)^{-1} \varphi_t \]

- plus $(CH2)_t \times \varphi$

\[\mu_t = -\Delta \varphi_t + F''(\varphi) \varphi_t - \theta_t \times \varphi \]

- plus (heat) $\times (\theta^3 + \varphi_t)$

\[\theta_t + \mathbf{u} \cdot \nabla_x \theta + \theta (\varphi_t + \mathbf{u} \cdot \nabla_x \varphi) - \Delta \theta^3 = |D\mathbf{u}|^2 + |\nabla_x \mu|^2 \times (\theta^3 + \varphi_t) \]

- getting

\[\frac{d}{dt} \left(\| \nabla_x \mu \|^2_{L^2} + \| \theta \|^4_{L^4} \right) + \| \varphi_t \|^2_{H^1} + \| \theta^3 \|^2_{H^1} \leq c \int \Omega |\nabla_x \mu|^2 |\varphi_t + \theta^3| \, dx + \text{l.o.t.} \]

where l.o.t. can be easily handled
Having the inequality
\[
\frac{d}{dt} \left(\| \nabla x \mu \|^2_{L^2} + \| \theta \|^4_{L^4} \right) + \| \varphi_t \|^2_{H^1} + \| \theta^3 \|^2_{H^1} \leq c \int_\Omega |\nabla x \mu|^2 |\varphi_t + \theta^3| \, dx + \text{l.o.t.}
\]

one has now to deal with $|\nabla x \mu|^2 |\varphi_t + \theta^3|$

The only way to control it seems the following one:
\[
\int_\Omega \| \varphi_t + \theta^3 \| |\nabla x \mu|^2 \leq \| \varphi_t + \theta^3 \|_{H^1} \| |\nabla x \mu|^2 \|_{(H^1)'}
\]

In 2D we have that $L^p \subset (H^1)'$ for all $p > 1$. But, then, one goes on with
\[
\leq \epsilon \| \varphi_t + \theta^3 \|^2_{H^1} + c \epsilon \| \nabla x \mu \|^4_{L^2 p}
\]

which is bad!
The main idea: a dual Yudovich trick and a regularity estimate

- We know, however, that
 \[\| v \|_{L^q} \leq c q^{1/2} \| v \|_{H^1} \quad \text{for all } v \in H^1(\Omega), \ q < \infty \]

- Passing to the dual inequality, we infer
 \[\| \xi \|_{(H^1)^*} \leq c q^{1/2} \| \xi \|_{L^p} \quad \text{for all } \xi \in L^p(\Omega), \ p > 1, \ q = p^* \]

- Interpolating and optimizing w.r.t. \(q \), we arrive at
 \[\| \xi \|_{(H^1)^*} \leq c \| \xi \|_{L^1} \left(1 + \log^{1/2} \| \xi \|_{L^2} \right) \quad \text{for all } \xi \in L^2(\Omega) \]

Applying the above to \(\xi = |\nabla_x \mu|^2 \), we get a differential inequality of the form

\[\frac{d}{dt} \left(\| \nabla_x \mu \|_{L^2}^2 + \| \theta \|_{L^4}^4 \right) + \| \varphi_t \|_{H^1}^2 + \| \theta^3 \|_{H^1}^2 \leq c \| \nabla_x \mu \|_{L^2}^2 \left(\| \nabla_x \mu \|_{L^2}^2 \log \| \nabla_x \mu \|_{L^2}^2 \right) + \ldots \]

Hence, we get a global estimate thanks to a (generalized) Gronwall lemma.
Work in progress and further developments

- **Uniqueness in 2D**

- Convergence to **equilibria** in 2D. Existence of **attractors**

- **Allen-Cahn-type** models

- **Singular potentials** in Cahn-Hilliard (or Allen-Cahn)

- Non-isothermal **nonlocal** models