

A posteriori analysis of a discontinuous Galerkin scheme for a diffuse interface model

Jan Giesselmann

joint work with Ch. Makridakis (Univ. of Sussex), T. Pryer (Univ. of Reading)
9th DFG-CNRS WORKSHOP "Micro-Macro Modeling and Simulation of Liquid-Vapor Flows"

February 25-27 2014

Outline

- 1. Van-der-Waals fluid model
- 2. Relative entropy stability framework
 - convex energy
 - non-convex energy
- 3. Semi-discrete dG scheme
- 4. Reconstruction and error estimate

Van-der-Waals fluid model

One space dimension; describing fluid flows undergoing liquid-vapor phase transition:

$$u_t - v_x = 0$$

$$v_t - W'(u)_x = \mu v_{xx} - \gamma u_{xxx}$$
(vdW)

- \blacksquare u specific volume, v velocity
- W non-convex energy density \Rightarrow (vdW) is hyperbolic-elliptic
- $W \in C^3(\mathbb{R}, [0, \infty))$
- $\ \ \, \gamma > 0$ capillarity parameter, $\mu \geq 0$ viscosity.

We consider the problem on the flat circle, denoted S^1 .

Van-der-Waals fluid model

One space dimension; describing fluid flows undergoing liquid-vapor phase transition:

$$u_t - v_x = 0$$

$$v_t - W'(u)_x = \mu v_{xx} - \gamma u_{xxx}$$
 (vdW)

- \blacksquare u specific volume, v velocity
- W non-convex energy density \Rightarrow (vdW) is hyperbolic-elliptic
- $W \in C^3(\mathbb{R}, [0, \infty))$
- $\ \ \, \gamma > 0$ capillarity parameter, $\mu \geq 0$ viscosity.

We consider the problem on the flat circle, denoted $S^1.$ Associated energy balance

$$\left(W(u) + \frac{\gamma}{2}(u_x)^2 + \frac{1}{2}v^2\right)_t - \left(vW'(u) - \gamma vu_{xx} + \gamma v_x u_x + \mu vv_x\right)_x + \mu(v_x)^2 = 0.$$

Recall: Standard relative entropy (W strictly convex)

Consider the non-regularized, hyperbolic problem

$$u_t - v_x = 0$$
$$v_t - W'(u)_x = 0$$

with W strictly convex.

Solutions $(u,v),\,(\tilde{u},\tilde{v})$ can be compared by their relative entropy

$$\int_{S^1} W(\tilde{u}) - W(u) - W'(u)(\tilde{u} - u) + \frac{1}{2}(\tilde{v} - v)^2 dx,$$

which is equivalent to

$$\|\tilde{u} - u\|_{L^2(S^1)}^2 + \|\tilde{v} - v\|_{L^2(S^1)}^2.$$

Recall: Standard relative entropy (W strictly convex)

The relative entropy satisfies

$$\frac{d}{dt} \int_{S^{1}} W(\tilde{u}) - W(u) - W'(u)(\tilde{u} - u) + \frac{1}{2}(\tilde{v} - v)^{2} dx
- \int_{S^{1}} \left(\tilde{v} W'(\tilde{u}) - v W'(u) - W'(u)(\tilde{v} - v) - v (W'(\tilde{u}) - W'(u)) \right)_{x} dx
\leq \int_{S^{1}} v_{x} \left(W'(\tilde{u}) - W'(u) - W''(u)(\tilde{u} - u) \right) dx.$$

Standard relative entropy argument (W strictly convex)

For |W'''| bounded and v Lipschitz this implies

$$\frac{\mathrm{d}}{\mathrm{d}\,t} \int_{S^1} W(\tilde{u}) - W(u) - W'(u)(\tilde{u} - u) + \frac{1}{2}(\tilde{v} - v)^2 \,\mathrm{d}\,x$$

$$\leq C \Big(\|\tilde{u} - u\|_{L^2(S^1)}^2 + \|\tilde{v} - v\|_{L^2(S^1)}^2 \Big)$$

$$\leq C \int_{S^1} W(\tilde{u}) - W(u) - W'(u)(\tilde{u} - u) + \frac{1}{2}(\tilde{v} - v)^2 \,\mathrm{d}\,x.$$

Therefore, by Gronwall's Lemma, the relative entropy grows at most exponentially and, therefore, for t>s

$$\|\tilde{u}(t,\cdot) - u(t,\cdot)\|_{L^{2}} + \|\tilde{v}(t,\cdot) - v(t,\cdot)\|_{L^{2}}$$

$$\leq e^{C(t-s)} \Big(\|\tilde{u}(s,\cdot) - u(s,\cdot)\|_{L^{2}} + \|\tilde{v}(s,\cdot) - v(s,\cdot)\|_{L^{2}} \Big).$$

Back to the multi-phase case, i.e., W not convex

Regularized model:

$$u_t - v_x = 0$$

$$v_t - W'(u)_x = \mu v_{xx} - \gamma u_{xxx}.$$

For different (u, v) (\tilde{u}, \tilde{v}) their relative entropy is given by

$$\int_{S^1} W(\tilde{u}) - W(u) - W'(u)(\tilde{u} - u) + \frac{1}{2}(\tilde{v} - v)^2 + \frac{\gamma}{2}(\tilde{u}_x - u_x)^2 dx,$$

which is not convex, as $\,W$ is not convex and γ is small. On S^1 there are no boundary terms, and we obtain

$$\frac{\mathrm{d}}{\mathrm{d} t} \int_{S^1} W(\tilde{u}) - W(u) - W'(u)(\tilde{u} - u) + \frac{1}{2}(\tilde{v} - v)^2 + \frac{\gamma}{2}(\tilde{u}_x - u_x)^2 \, \mathrm{d} x$$

$$\leq \int_{S^1} v_x (W'(\tilde{u}) - W'(u) - W''(u)(\tilde{u} - u)) - \mu (v_x - \tilde{v}_x)^2 \, \mathrm{d} x.$$

Estimating the partial relative entropy rate

Idea: Remove the W terms from the relative entropy. Indeed

$$\partial_t \Big(W(\tilde{u}) - W(u) - W'(u)(\tilde{u} - u) \Big)$$

$$= W'(\tilde{u})\tilde{u}_t - W'(u)u_t - W''(u)u_t(\tilde{u} - u) - W'(u)\tilde{u}_t + W'(u)u_t$$

$$= \tilde{v}_x W'(\tilde{u}) - \tilde{v}_x W'(u) - v_x W''(u)(\tilde{u} - u).$$

Thus, we can shift the W terms to the right hand side and find

$$\frac{\mathrm{d}}{\mathrm{d} t} \int_{S^1} \frac{1}{2} (\tilde{v} - v)^2 + \frac{\gamma}{2} (\tilde{u}_x - u_x)^2 \, \mathrm{d} x
\leq \int_{S^1} (v - \tilde{v})_x (W'(\tilde{u}) - W'(u)) - \mu (v_x - \tilde{v}_x)^2 \, \mathrm{d} x.$$

Continuous dependence on initial data

Lemma (JG '13)

For $\mu>0$ let $u_0,\,\tilde{u}_0\in H^3(S^1),\,v_0,\,\tilde{v}_0\in H^2(S^1)$ be given with $\int_{S^1}(u_0-\tilde{u}_0)\,\mathrm{d}x=0.$ Then, for any T>0, it exists a constant $C=C(u_0,v_0,\gamma,\mu,T)$ such that

$$||v(t,\cdot) - \tilde{v}(t,\cdot)||_{L^{2}(S^{1})} + |u(t,\cdot) - \tilde{u}(t,\cdot)|_{H^{1}(S^{1})}$$

$$\leq C \Big(||v_{0} - \tilde{v}_{0}||_{L^{2}(S^{1})} + |u_{0} - \tilde{u}_{0}|_{H^{1}(S^{1})} \Big)$$

for all t < T.

Sketch of the proof: For any T > 0 there exist strong solutions

$$u, \tilde{u} \in C^1((0, T), L^2(S^1)) \cap C^0((0, T), H^3(S^1))$$

 $v, \tilde{v} \in C^1((0, T), L^2(S^1)) \cap C^0((0, T), H^2(S^1)).$

Sketch of the proof

Due to the energy inequality and the continuous embedding $H^1(S^1) \to C^0(S^1)$, we find that $\|u\|_{L^{\infty}}, \|\tilde{u}\|_{L^{\infty}} < \infty$. The partial relative entropy calculation leads to

$$\frac{\mathrm{d}}{\mathrm{d}\,t} \int_{S^1} \frac{1}{2} (\tilde{v} - v)^2 + \frac{\gamma}{2} (\tilde{u}_x - u_x)^2 \,\mathrm{d}\,x$$

$$= \int_{S^1} (\tilde{v} - v)_x (W'(u) - W'(\tilde{u})) - \mu (v_x - \tilde{v}_x)^2 \,\mathrm{d}\,x.$$

Such that by Young's and Poincaré's inequality

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{S^1} \frac{1}{2} (\tilde{v} - v)^2 + \frac{\gamma}{2} (\tilde{u}_x - u_x)^2 \, \mathrm{d}x \le C \int_{S^1} \frac{\gamma}{2} (\tilde{u}_x - u_x)^2 \, \mathrm{d}x.$$

Gronwall's Lemma concludes the proof.

Continuous dependence on initial data for $\mu = 0$

Lemma (JG '13)

For $\mu = 0$ let solutions

$$u, \tilde{u} \in C^1((0, T), L^2(S^1)) \cap C^0((0, T), H^3(S^1))$$

 $v, \tilde{v} \in C^1((0, T), L^2(S^1)) \cap C^0((0, T), H^1(S^1))$

corresponding to initial data (u_0, v_0) and $(\tilde{u}_0, \tilde{v}_0)$ be given with $\int_{S^1} (u_0 - \tilde{u}_0) dx = 0$. Let |W''| be bounded.

Then it exists a constant $C = C(u_0, v_0, \gamma, T)$ such that

$$||v(t,\cdot) - \tilde{v}(t,\cdot)||_{L^2(S^1)} + |u(t,\cdot) - \tilde{u}(t,\cdot)|_{H^1(S^1)}$$

$$\leq C \Big(||v_0 - \tilde{v}_0||_{L^2(S^1)} + |u_0 - \tilde{u}_0|_{H^1(S^1)} \Big)$$

for all t < T.

Sketch of the proof

The partial relative entropy calculation leads to

$$\frac{d}{dt} \int_{S^1} \frac{1}{2} (\tilde{v} - v)^2 + \frac{\gamma}{2} (\tilde{u}_x - u_x)^2 dx$$

$$= \int_{S^1} (\tilde{v} - v)_x (W'(u) - W'(\tilde{u})) dx$$

$$\leq \int_{S^1} (\tilde{v} - v)^2 + ((W'(u) - W'(\tilde{u}))_x)^2 dx$$

$$\leq C \int_{S^1} \frac{1}{2} (\tilde{v} - v)^2 + \frac{\gamma}{2} (\tilde{u}_x - u_x)^2 dx$$

using Young's and Poincaré's inequality.
Applying Gronwall's Lemma concludes the proof.

Semi-discrete dG scheme (from now on $\mu = 0$)

Decompose [0,1] into $0=x_0 < x_1 < \cdots < x_N=1$. Identify 0 and 1. $\mathbb{V}_q:=$ space of (discontinuous) piece-wise polynomials of degree $\leq q$, $\mathbb{V}_q^c:=\mathbb{V}_q\cap C^0(S^1)$.

Find
$$u_h, v_h \in C^1((0,T), \mathbb{V}_q), \ \tau_h \in C^0([0,T], \mathbb{V}_q)$$
 such that
$$0 = \int_{S^1} \partial_t u_h \Phi - G[u_h] \Phi \operatorname{d} x \quad \forall \Phi \in \mathbb{V}_q$$

$$0 = \int_{S^1} \partial_t v_h \Psi - G[\tau_h] \Psi \operatorname{d} x \quad \forall \Psi \in \mathbb{V}_q$$

$$0 = \int_{S^1} \tau_h Z - W'(u_h) Z \operatorname{d} x + \gamma a_h(u_h, Z) \quad \forall Z \in \mathbb{V}_q,$$

where a_h is an interior penalty discretisation of the Laplacian and G denotes a discrete gradient operator.

Discretisations

For $g_h \in \mathbb{V}_q$ we define $G[g_h] \in \mathbb{V}_q$ by

$$\int_{S^1} G[g_h] \Phi \, \mathrm{d}x = \sum_{i=0}^{N-1} \left(\int_{x_i}^{x_{i+1}} (g_h)_x \Phi \, \mathrm{d}x - [g_h]_{x_i} \{\!\!\{ \Phi \}\!\!\}_{x_i} \right)$$

for all $\Phi \in \mathbb{V}_q$.

For $f_h, g_h \in \mathbb{V}_q$ we define

$$a_h(f_h, g_h) := \sum_{i=0}^{N-1} \left(\int_{x_i}^{x_{i+1}} (f_h)_x (g_h)_x \, \mathrm{d}x - \llbracket f_h \rrbracket_{x_i} \, \{\!\!\{ (g_h)_x \}\!\!\}_{x_i} \right. \\ \left. - \llbracket g_h \rrbracket_{x_i} \, \{\!\!\{ (f_h)_x \}\!\!\}_{x_i} + \frac{\sigma}{h} \, \llbracket f_h \rrbracket_{x_i} \, \llbracket g_h \rrbracket_{x_i} \right),$$

for some $\sigma\gg 1$, such that $a_h:\mathbb{V}_q\times\mathbb{V}_q\to\mathbb{R}$ is coercive.

Reconstruction 1

 $\hat{ au} \in \mathbb{V}_{q+1}$ is defined by

$$\begin{split} 0 &= \int_{S^1} (\hat{\tau}_x - G[\tau_h]) \Psi \operatorname{d} x \ \forall \Psi \in \mathbb{V}_q \ \text{and} \\ \hat{\tau}(x_n^-) &= \frac{\tau_h(x_n^-) + \tau_h(x_n^+)}{2} \ \forall n \in \{0,\dots,N-1\}. \end{split}$$

It can be shown that

- $\hat{\tau}$ is continuous.
- $\|\hat{\tau} \tau_h\|_{L^2(S^1)}^2 \le \sum_{i=0}^{N-1} (x_{i+1} x_i) \Big(\|\tau_h\|_{x_i}^2 + \|\tau_h\|_{x_{i+1}}^2 \Big).$

Reconstruction 2

 $\tilde{u} \in H^3(S^1)$ is defined by

$$0 = \gamma \partial_{xx} \tilde{u} - P_{q+1}^c(W'(u_h)) + \hat{\tau},$$

where $P_{q+1}^c:L^2(S^1) \to \mathbb{V}_{q+1}^c$ is the L^2 -projection, and

$$\int_{S^1} (u - \tilde{u}) \, \mathrm{d}x = 0.$$

Using elliptic regularity and a posteriori control of elliptic reconstructions we have

$$\|\tilde{u} - u_h\|_{dG} := \left(\sum_{l} |\tilde{u} - u_h|_{H^1((x_i, x_{i+1}))}^2 + \sum_{l} |\tilde{u} - u_h|_{x_i}^2\right)^{\frac{1}{2}}$$

$$\leq C \|P_{q+1}^c(W'(u_h)) - W'(u_h)\|_{H^{-1}(S^1)}$$

$$+ C \|\hat{\tau} - \tau_h\|_{H^{-1}(S^1)} + H[u_h, W'(u_h), \tau_h],$$

where $H[u_h, W'(u_h), \tau_h]$ is an explicitly computable estimator, expected to be of order h^q .

Reconstruction 2 cont'd

$$||P_{q+1}^{c}(W'(u_{h})) - W'(u_{h})||_{H^{-1}(S^{1})} \leq C \sqrt{\sum_{i} (x_{i+1} - x_{i}) ||[u_{h}]||^{2}} + C \sup_{i} (x_{i+1} - x_{i})^{q+1} ||W'(u_{h})||_{H^{1}((x_{i}, x_{i+1}))}.$$

According to arguments provided by Nochetto and Makridakis '06 terms of the structure

$$\sqrt{\sum_{i}(x_{i+1}-x_{i})|\llbracket\cdot_{h}\rrbracket|^{2}}$$

are expected to be of optimal order.

Reconstruction 3

 $\hat{v} \in \mathbb{V}_{q+1}$ is defined by

$$0 = \int_{S^1} (\hat{v}_x - G[v_h]) \Psi \,\mathrm{d}\,x \ \forall \Psi \in \mathbb{V}_q \ \text{ and } \ \hat{v}(x_n^-) = \frac{v_h(x_n^-) + v_h(x_n^+)}{2} \,\forall n.$$

 $\tilde{v} \in H^2(S^1)$ is defined by

$$0 = \partial_{xx}\tilde{v} - \partial_{xt}\tilde{u}$$
 and $\int_{S^1} \tilde{v} - v_h \, \mathrm{d}x = 0.$

 \hat{v} is continuous and

$$\|\hat{v} - v_h\|_{L^2(S^1)}^2 \le \sum_{i=0}^{N-1} (x_{i+1} - x_i) \Big([v_h]_{x_i}^2 + [v_h]_{x_{i+1}}^2 \Big),$$

while

$$\|\tilde{v} - \hat{v}\|_{L^2(S^1)} \le \|\partial_t \tilde{u} - \partial_t u_h\|_{dG}.$$

Perturbed equation

By definition the reconstructions satisfy (point-wise a.e.)

$$\tilde{u}_t - \tilde{v}_x = 0$$
$$(v_h)_t - \hat{\tau}_x = 0$$

which implies, by definition of \tilde{u} ,

$$(v_h)_t - (P_{q+1}^c(W'(u_h)))_x + \gamma \tilde{u}_{xxx} = 0.$$

Thus,

$$\tilde{u}_t - \tilde{v}_x = 0$$

$$\tilde{v}_t - W'(\tilde{u})_x = -\gamma \tilde{u}_{xxx} + E,$$

where the residual E is given by

$$E := \partial_t(\tilde{v} - v_h) + \partial_x(P_{a+1}^c(W'(u_h)) - W'(\tilde{u})).$$

By the estimates above, E is bounded explicitly in terms of u_h, v_h, τ_h .

Partial relative entropy

Then, the partial relative entropy calculation implies

$$\frac{\mathrm{d}}{\mathrm{d}\,t} \int_{S^1} \frac{1}{2} (\tilde{v} - v)^2 + \frac{\gamma}{2} (\tilde{u}_x - u_x)^2 \,\mathrm{d}\,x$$

$$= \int_{S^1} (v - \tilde{v}) (W'(\tilde{u}) - W'(u))_x \,\mathrm{d}\,x + \int_{S^1} (v - \tilde{v}) E \,\mathrm{d}\,x.$$

We infer

$$\frac{\mathrm{d}}{\mathrm{d} t} \int_{S^1} \frac{1}{2} (\tilde{v} - v)^2 + \frac{\gamma}{2} (\tilde{u}_x - u_x)^2 \, \mathrm{d} x$$

$$\leq C \int_{S^1} \frac{1}{2} (\tilde{v} - v)^2 + \frac{\gamma}{2} (\tilde{u}_x - u_x)^2 \, \mathrm{d} x + \int_{S^1} E^2 \, \mathrm{d} x.$$

Error estimate

Applying Gronwall's Lemma and triangle inequality gives

Theorem (JG, Makridakis, Pryer '14)

Let (u_h, v_h) denote the solution of the semi-discrete dG scheme. Let (u, v) be a weak solution of (vdW) with

$$u \in C^1((0, T), L^2(S^1)) \cap C^0([0, T], H^3(S^1))$$

 $v \in C^1((0, T), L^2(S^1)) \cap C^0([0, T], H^1(S^1))$

Then, there is C>0 such that.

$$||v_h(t,\cdot) - v(t,\cdot)||_{L^2(S^1)}^2 + |u_h(t,\cdot) - u(t,\cdot)|_{dG}^2 \le C(E_1 + E_2 + E_3),$$

where
$$E_1 := \left(\|\tilde{v}(0,\cdot) - v_0\|_{L^2(S^1)}^2 + |\tilde{u}(0,\cdot) - u_0|_{H^1(S^1)}^2 \right) \exp(Ct)$$

$$E_2 := \int_0^t \int_{S^1} E^2 \, \mathrm{d}x \, \mathrm{d}t \cdot \exp(Ct)$$

$$E_3 := \|\tilde{v}(t,\cdot) - v_h(t,\cdot)\|_{L^2(S^1)}^2 + |\tilde{u}(t,\cdot) - u_h(t,\cdot)|_{dG}^2.$$

Error estimate

Applying Gronwall's Lemma and triangle inequality gives

Theorem (JG, Makridakis, Pryer '14)

Let (u_h, v_h) denote the solution of the semi-discrete dG scheme. Let (u, v) be a weak solution of (vdW) with

$$u \in C^1((0, T), L^2(S^1)) \cap C^0([0, T], H^3(S^1))$$

 $v \in C^1((0, T), L^2(S^1)) \cap C^0([0, T], H^1(S^1))$

Then, there is C>0 such that,

$$||v_h(t,\cdot) - v(t,\cdot)||_{L^2(S^1)}^2 + |u_h(t,\cdot) - u(t,\cdot)|_{dG}^2 \le C(E_1 + E_2 + E_3),$$

where
$$E_1 := \left(\|\tilde{v}(0,\cdot) - v_0\|_{L^2(S^1)}^2 + |\tilde{u}(0,\cdot) - u_0|_{H^1(S^1)}^2 \right) \exp(Ct)$$

$$E_2 := \int_0^t \int_{S^1} E^2 \, \mathrm{d}x \, \mathrm{d}t \cdot \exp(Ct)$$

$$E_3 := \|\tilde{v}(t,\cdot) - v_h(t,\cdot)\|_{L^2(S^1)}^2 + |\tilde{u}(t,\cdot) - u_h(t,\cdot)|_{dG}^2.$$

Note that E_1, E_2, E_3 can be explicitly bounded in terms of u_h, v_h, τ_h .

Summary and outlook

Summary

- New stability framework for regularized hyperbolic-elliptic problems.
- Derived an a posteriori error estimate.
- Estimate depends sensitively on γ , blows up for $\gamma \to 0$.
- Stability framework can also be used for model convergence.

Outlook

- Numerical experiments.
- Extension to fully discrete scheme.
- Extension to several space dimensions.
- Including viscosity.

Summary and outlook

Summary

- New stability framework for regularized hyperbolic-elliptic problems.
- Derived an a posteriori error estimate.
- Estimate depends sensitively on γ , blows up for $\gamma \to 0$.
- Stability framework can also be used for model convergence.

Outlook

- Numerical experiments.
- Extension to fully discrete scheme.
- Extension to several space dimensions.
- Including viscosity.

Thank you for your attention!