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Van-der-Waals fluid model

One space dimension; describing fluid flows undergoing liquid-vapor
phase transition:

U — vy =0
, (vdW)
Uy — w (U)I = UUzz — VY Ugzs

u specific volume, v velocity

W non-convex energy density = (vdW) is hyperbolic-elliptic
W e C3(R,[0,00))

~v > 0 capillarity parameter, p > 0 viscosity.

consider the problem on the flat circle, denoted S*.
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Van-der-Waals fluid model

One space dimension; describing fluid flows undergoing liquid-vapor
phase transition:

U — vy =0
, (vdW)
Uy — w (U)I = UUzz — VY Ugzs

m v specific volume, v velocity

m IV non-convex energy density = (vdW) is hyperbolic-elliptic
m We C3R,[0,00))

m v > 0 capillarity parameter, 1 > 0 viscosity.

We consider the problem on the flat circle, denoted S*.
Associated energy balance
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(W(u)+§(uz)2+§v2)t_ (vW/(U)_'VUUII+'YUIUI+MUUI)z—H“L(v“”)Q =0.



Recall: Standard relative entropy (W strictly convex)

Consider the non-regularized, hyperbolic problem

Uy — vy =0

v — W (u), =0

with W strictly convex.
Solutions (u, v), (&, ¥) can be compared by their relative entropy

. W (@) — W(u) — W(u) (it —u) + = (v — v)*du,

which is equivalent to

1 = ullZz sy + 17 = vlTa(sn)-



Recall: Standard relative entropy (W strictly convex)

The relative entropy satisfies



Standard relative entropy argument (W strictly convex)

For | W"’| bounded and v Lipschitz this implies
4
di Jo
< C(lla - ullfz(sr) + 17— vllZ2s1y)

W(a) — W(u) — W (u)(i—u)+ = (v —v)*dz

< (J/S1 W(a) — W(u) — W (u)(@t — u) + %(@— v)?d .

Therefore, by Gronwall’s Lemma, the relative entropy grows at most
exponentially and, therefore, for t > s

”ﬂ(tv ) - U(t, ')”L2 + H’D(t7 ) - U(tv ')||L2
< e (s, ) = uls, ) g2 + 19(5,) = (s, ) 2)-
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Back to the multi-phase case, i.e., W not convex

Regularized model:
U — vy =0
U — W/(u)m = HUzg — YUggz-
For different (u, v) (%, ©) their relative entropy is given by

1
W(@) = W(u) = W (w)(i—w)+ (5 — ) + %(ﬂz —w)?da,
Sl
which is not convex, as W is not convex and v is small.
On S there are no boundary terms, and we obtain

[ W - W - W@ + 56— 0 + (@ - w)ds

< / v W' (@) — W (u) = W (u)(@ — w)) — i(ve — ) .
Sl



Estimating the partial relative entropy rate

Idea: Remove the W terms from the relative entropy. Indeed

at(W(a) — W(u) — W' (u) (i — u))
=W'(a)u — W (u)uy — W (u
=0, W'(@) — 0, W' (u) — v, W”



Continuous dependence on initial data

Lemma (JG '13)
For p>0 /et ug, iy € H3(SY), v, 7o € H?(S') be given with

S (uo dz = 0.
Then, for any T > 0, it exists a constant C' = C(ug, vo,7, i, T') such
that

[o(t,-) = 0(t, )l L2(sny + lult, ) — @lt, ) sy
< (||Uo — ol z2(s1) + |uo — To| 1 (s1) )

forallt < T.

Sketch of the proof: For any T > 0 there exist strong solutions

u, @€ CH((0, T), L*(SY)) N C°((0, T), H*(SY))
v, v € CH((0, T), L*(SY)) N C°((0, T), H*(SY)).



Sketch of the proof

Due to the energy inequality and the continuous embedding
HY(SY) — C°(S1), we find that ||ul| =, || ]| L~ < oo
The partial relative entropy calculation leads to

d [ 1,
at Jg 2V

_ /Sl(@ ) (W () = W) = plvs — 1) d

Such that by Young's and Poincaré’s inequality

d 1 . _ _
E 315 v D) Uz_ux)deS C g1 %(ux_ux)2dx

|
=
S
+
=2

Gronwall's Lemma concludes the proof.



Continuous dependence on initial data for u =0

Lemma (JG '13)

For = 0 let solutions

u, @€ C((0, T), L*(8%)) n C°((0, T), H*(S1))
v, € C1((0, T),L*(8%)) n C°((0, T), H'(S"))
corresponding to initial data (ug, vo) and (g, 7) be given with

Js1 (g — @) dz = 0. Let |W"| be bounded.
Then it exists a constant C' = C(ug, vy, 7y, T) such that

o(t,) = 0(t, )lLzcsry + lults ) — @lt, )y
< C(HUO — ol z2(s1) + |uo — ﬂo|H1(SI))

forall t < T.
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Sketch of the proof

The partial relative entropy calculation leads to

d 1

- 2, Y/~ 2
T T d
1 SIZ(U v) —|—2(u ug)*dx

<C [ Z(v—v)?+
Sl

using Young's and Poincaré’s inequality.
Applying Gronwall's Lemma concludes the proof.



Semi-discrete dG scheme (from now on = 0)

Decompose [0,1] into 0 = 2y < 23 < -+ < zy = 1. Identify 0 and 1.
V4 := space of (discontinuous) piece-wise polynomials of degree < ¢,

Vo=V, co(sh).

Find up,, v, € C1((0, T),V,), 7, € C°([0, T],V,) such that

0= Oup® — Glup|2dz YO eV,
Sl

0= Oup¥ — G )T dz VU eV,
Sl

0= / 2 — W'(up)Zdx +yap(un, Z) VZ €V,
Sl

where ay, is an interior penalty discretisation of the Laplacian and G
denotes a discrete gradient operator.



Discretisations

For gj, € V, we define Glg] € V, by

N—1 i1
/51 Glgn]® dz = ; (/x (9n)®dz — [gn],,, { q)}zi)

forall @ € V,.

For fu, gn € V4 we define

N—1 wz+1
g i= > ([ (alanzdo = LA, { (90): B

—Mhﬁ%h%+%%hh&j

for some o > 1, such that ay : V, x V, = R is coercive.

14 /22



Reconstruction 1

7 € Vgy1 is defined by

0 :/ (2 — Glm])¥dz YU €V, and
Sl

~ooy - malay) ()
Fay) = D D)
It can be shown that

®m T is continuous.

A N—-1 2 2
w117 = 3, € 20 @i — =) (I, + [l ).

Vne{0,...,N—1}.
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Reconstruction 2
7€ H3(S') is defined by

0= Y8plt — Py (W (un)) + 7,

where P¢,, : L*(S') — V¢, is the L?-projection, and

/Sl(ufﬂ)dx:O.

Using elliptic regularity and a posteriori control of elliptic reconstructions
we have
')

= wnllac = (D2 1= sl oy + 2 2= il
+ ClI7 = 7l -1(s1y + Hlun, W' (up), 7],

Nl=

< CI PG (W (un)) = W (un)ll -1 (s

where Hup, W’ (up), 7] is an explicitly computable estimator, expected
to be of order h?.
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Reconstruction 2 cont'd

PG (W' (un)) = W' (un) | =151 < C\/Z(ml — )| [un] |2

i

+ CSll.p(IZ'Jrl - xi)q+1‘ W/(uh)|H1((Ii7$i+1))‘

According to arguments provided by Nochetto and Makridakis '06 terms

of the structure
\/Zmﬂ TRT:

7

are expected to be of optimal order.
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Reconstruction 3
b € Vgy1 is defined by

- +
0= / (o — Glu))Udz YU €V, and (z;) = W Vn.
Sl
v € H?(SY) is defined by
0 = 0y — Ozt and / v — v, dz = 0.
Sl

¥ is continuous and

N-1
A 2 2
15— onll3zs < 3 (@ien = @) ([0l + [l )
=0

while
10— 9| L2(s1) < [|0:0 — Opunllac-



Perturbed equation

By definition the reconstructions satisfy (point-wise a.e.)

which implies, by definition of 4,
(vn)¢ — (P§+1(W’(uh)))z + Ylgge = 0.
Thus,

ﬂt—@mzo

'Dt - W/(ﬂ)ac - *"Yﬂzzm + Ea
where the residual E is given by

E = 0,(0 — vp) + 0o (PEy (W (wh)) — W' (@)).

By the estimates above, F is bounded explicitly in terms of wuy, vy, 7.
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Partial relative entropy

Then, the partial relative entropy calculation implies

d 1. 2, 7~ 2
i /s 2(1} v)° + Q(um ug)*da
:/ (0= B)(W'(3) - W’(u))mdx—i—/ (v—D)Edz
st st
We infer
d 1. 2, 7/~ 2
17 Ja 5(1} v)” 4+ §(um ug)*da



Error estimate
Applying Gronwall's Lemma and triangle inequality gives
Theorem (JG, Makridakis, Pryer '14)

Let (up, vp,) denote the solution of the semi-discrete dG scheme. Let
(u,v) be a weak solution of (vdW) with

uwe CH(0, T), L2(SY)) n C°([o, T], H3(SY))
ve CH(0, T), L*(SY)) n C°([o, T), H(S"))
Then, there is C>0 such that,
lon(t, ) — v(t, ~)Hiz(51> + lun(t,-) — u(t,)|3¢ < C(Er + By + Es),

where _ .
B = (||v(0, ) = w32y + 120, ) - u0|2Hl(Sl)) exp(Ct)

t
Es ;:// E? dz dt - exp(Ct)
0 Jst
B i= [[(t,) = on (6, )xgsny + 16 ) = unlt,




Error estimate
Applying Gronwall's Lemma and triangle inequality gives

Theorem (JG, Makridakis, Pryer '14)

Let (up, vp,) denote the solution of the semi-discrete dG scheme. Let
(u,v) be a weak solution of (vdW) with

uwe CH(0, T), L2(SY)) n C°([o, T], H3(SY))

ve CH(0, T), L*(SY)) n C°([o, T), H(S"))
Then, there is C>0 such that,

lon(t, ) = v(t M Zagsry + lun(t, ) = u(t, )ig < C(By + Bz + Bs),

where _ .
B = (||v(0, ) = w32y + 120, ) - uoﬁp(sl)) exp(Ct)

t
B :=// E? dedt - exp(Ct)
0 St
By o= ot ) = wn ) 3aqeny + [t ) = wn(t, )

Note that FEy, Es, E3 can be explicitly bounded in terms of uy, vy, Th.




Summary and outlook

Summary

New stability framework for regularized hyperbolic-elliptic problems.
Derived an a posteriori error estimate.
Estimate depends sensitively on ~y, blows up for v — 0.

Stability framework can also be used for model convergence.

Outlook

Numerical experiments.
Extension to fully discrete scheme.
Extension to several space dimensions.

Including viscosity.
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Summary and outlook

Summary

New stability framework for regularized hyperbolic-elliptic problems.
Derived an a posteriori error estimate.
Estimate depends sensitively on ~y, blows up for v — 0.

Stability framework can also be used for model convergence.

Outlook

Numerical experiments.
Extension to fully discrete scheme.
Extension to several space dimensions.

Including viscosity.

Thank you for your attention!
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