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Structure of the talk

Introduction: �gψ = 0 on asymptotically flat backgrounds (M, g)
and decay properties on (Rd+1, η).

Decay in the exterior of a smooth compact obstacle O ⊂ Rd : A
result of Burq.

Decay on product Lorentzian manifolds: A result of Rodnianski–Tao.

A decay result for general asymptotically flat black hole spacetimes
with a small ergoregion.

Decay in the presence of an evanescent ergosurface.

Proof of Friedman’s instability for spacetimes with an ergoregion and
no event horizon.
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Introduction: The wave equation on asymptotically flat
backgrounds

Scalar wave equation on (Md+1, g):

�gφ =
1√
−g

∂μ
(
gμν
√
−g∂νφ

)
= 0.

Appears frequently in mathematical physics:

Fluid mechanics: g is the acoustical metric of a fluid in motion

General relativity: g is the spacetime metric of a 3 + 1 dimensional
model of our universe.

We will only consider backgrounds (M, g) which are globally hyperbolic.

The initial value problem with initial data on a Cauchy hypersurface
Σ is well defined.

We will call (M, g) asymptotically flat if g approaches the Minkwoski
metric η asymptotically, where

η = −dt2 + dx1 + · · ·+ (dxd)2.



Introduction: The wave equation on asymptotically flat
backgrounds

Scalar wave equation on (Md+1, g):

�gφ =
1√
−g

∂μ
(
gμν
√
−g∂νφ

)
= 0.

Appears frequently in mathematical physics:

Fluid mechanics: g is the acoustical metric of a fluid in motion

General relativity: g is the spacetime metric of a 3 + 1 dimensional
model of our universe.

We will only consider backgrounds (M, g) which are globally hyperbolic.

The initial value problem with initial data on a Cauchy hypersurface
Σ is well defined.

We will call (M, g) asymptotically flat if g approaches the Minkwoski
metric η asymptotically, where

η = −dt2 + dx1 + · · ·+ (dxd)2.



Introduction: The wave equation on asymptotically flat
backgrounds

Scalar wave equation on (Md+1, g):

�gφ =
1√
−g

∂μ
(
gμν
√
−g∂νφ

)
= 0.

Appears frequently in mathematical physics:

Fluid mechanics: g is the acoustical metric of a fluid in motion

General relativity: g is the spacetime metric of a 3 + 1 dimensional
model of our universe.

We will only consider backgrounds (M, g) which are globally hyperbolic.

The initial value problem with initial data on a Cauchy hypersurface
Σ is well defined.

We will call (M, g) asymptotically flat if g approaches the Minkwoski
metric η asymptotically, where

η = −dt2 + dx1 + · · ·+ (dxd)2.



Introduction: The wave equation on asymptotically flat
backgrounds

Scalar wave equation on (Md+1, g):

�gφ =
1√
−g

∂μ
(
gμν
√
−g∂νφ

)
= 0.

Appears frequently in mathematical physics:

Fluid mechanics: g is the acoustical metric of a fluid in motion

General relativity: g is the spacetime metric of a 3 + 1 dimensional
model of our universe.

We will only consider backgrounds (M, g) which are globally hyperbolic.

The initial value problem with initial data on a Cauchy hypersurface
Σ is well defined.

We will call (M, g) asymptotically flat if g approaches the Minkwoski
metric η asymptotically, where

η = −dt2 + dx1 + · · ·+ (dxd)2.



Introduction: The wave equation on asymptotically flat
backgrounds

Scalar wave equation on (Md+1, g):

�gφ =
1√
−g

∂μ
(
gμν
√
−g∂νφ

)
= 0.

Appears frequently in mathematical physics:

Fluid mechanics: g is the acoustical metric of a fluid in motion

General relativity: g is the spacetime metric of a 3 + 1 dimensional
model of our universe.

We will only consider backgrounds (M, g) which are globally hyperbolic.

The initial value problem with initial data on a Cauchy hypersurface
Σ is well defined.

We will call (M, g) asymptotically flat if g approaches the Minkwoski
metric η asymptotically, where

η = −dt2 + dx1 + · · ·+ (dxd)2.



Introduction: The wave equation on asymptotically flat
backgrounds

Scalar wave equation on (Md+1, g):

�gφ =
1√
−g

∂μ
(
gμν
√
−g∂νφ

)
= 0.

Appears frequently in mathematical physics:

Fluid mechanics: g is the acoustical metric of a fluid in motion

General relativity: g is the spacetime metric of a 3 + 1 dimensional
model of our universe.

We will only consider backgrounds (M, g) which are globally hyperbolic.

The initial value problem with initial data on a Cauchy hypersurface
Σ is well defined.

We will call (M, g) asymptotically flat if g approaches the Minkwoski
metric η asymptotically, where

η = −dt2 + dx1 + · · ·+ (dxd)2.



Introduction: The wave equation on asymptotically flat
backgrounds

Scalar wave equation on (Md+1, g):

�gφ =
1√
−g

∂μ
(
gμν
√
−g∂νφ

)
= 0.

Appears frequently in mathematical physics:

Fluid mechanics: g is the acoustical metric of a fluid in motion

General relativity: g is the spacetime metric of a 3 + 1 dimensional
model of our universe.

We will only consider backgrounds (M, g) which are globally hyperbolic.

The initial value problem with initial data on a Cauchy hypersurface
Σ is well defined.

We will call (M, g) asymptotically flat if g approaches the Minkwoski
metric η asymptotically, where

η = −dt2 + dx1 + · · ·+ (dxd)2.



Introduction: The wave equation on asymptotically flat
backgrounds

Scalar wave equation on (Md+1, g):

�gφ =
1√
−g

∂μ
(
gμν
√
−g∂νφ

)
= 0.

Appears frequently in mathematical physics:

Fluid mechanics: g is the acoustical metric of a fluid in motion

General relativity: g is the spacetime metric of a 3 + 1 dimensional
model of our universe.

We will only consider backgrounds (M, g) which are globally hyperbolic.

The initial value problem with initial data on a Cauchy hypersurface
Σ is well defined.

We will call (M, g) asymptotically flat if g approaches the Minkwoski
metric η asymptotically, where

η = −dt2 + dx1 + · · ·+ (dxd)2.



The wave equation on (Rd+1, η)

The simplest example of an asymptotically flat spacetime: Minkowski
spacetime (Rd+1, η). Wave equation:

�ηφ = −∂2
t φ+ ∂2

x1φ+ . . . + ∂2
xdφ = 0.

Conservation of energy: For all t ∈ R,

E [φ](t)
.

=

ˆ
Rd

∣∣∇φ(t, x)
∣∣2 dx = E [φ](0).

Local energy decay:

E≤R [φ](t) ≤ CR(1 + t)−2

ˆ
{t=0}

r2
+

∣∣∇φ∣∣2 dx .
Pointwise decay estimates:

|φ| ≤ C
(
1 + |t − r |

)− 1
2
(
1 + t + r

)− d−1
2

( d d+1
2 e∑

j=1

ˆ
{t=0}

r2j
+ |∇j

φ|2 dx
) 1

2

.

Valid on small radiating perturbations of (Rd+1, η)
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The exterior of an obstacle O in Rd

Let O be a compact open subset of Rd with smooth boundary ∂O.
Equation �ηφ = 0 on M = R×

(
Rd\O

)
with Dirichlet or Neumann

boundary conditions on ∂O has been extensively studied in the last 50
years.

Conservation of the energy

E [φ](t) =

ˆ
Rd\O

∣∣∇φ(t, x)
∣∣2 dx ,

yields boundedness estimates for φ and its derivatives, as well as
decay without a rate.

Quantitative decay estimates: Trapping enters the picture.



The exterior of an obstacle O in Rd

Let O be a compact open subset of Rd with smooth boundary ∂O.
Equation �ηφ = 0 on M = R×

(
Rd\O

)
with Dirichlet or Neumann

boundary conditions on ∂O has been extensively studied in the last 50
years.

Conservation of the energy

E [φ](t) =

ˆ
Rd\O

∣∣∇φ(t, x)
∣∣2 dx ,

yields boundedness estimates for φ and its derivatives, as well as
decay without a rate.

Quantitative decay estimates: Trapping enters the picture.



The exterior of an obstacle O in Rd

Let O be a compact open subset of Rd with smooth boundary ∂O.
Equation �ηφ = 0 on M = R×

(
Rd\O

)
with Dirichlet or Neumann

boundary conditions on ∂O has been extensively studied in the last 50
years.

Conservation of the energy

E [φ](t) =

ˆ
Rd\O

∣∣∇φ(t, x)
∣∣2 dx ,

yields boundedness estimates for φ and its derivatives, as well as
decay without a rate.

Quantitative decay estimates: Trapping enters the picture.



The exterior of an obstacle O in Rd

Let O be a compact open subset of Rd with smooth boundary ∂O.
Equation �ηφ = 0 on M = R×

(
Rd\O

)
with Dirichlet or Neumann

boundary conditions on ∂O has been extensively studied in the last 50
years.

Conservation of the energy

E [φ](t) =

ˆ
Rd\O

∣∣∇φ(t, x)
∣∣2 dx ,

yields boundedness estimates for φ and its derivatives, as well as
decay without a rate.

Quantitative decay estimates: Trapping enters the picture.



The exterior of an obstacle O in Rd

In the absence of trapping: Morawetz, Ralston and Strauss (1977)
showed that ˆ +∞

0

E≤R [φ](t) dt ≤ CRE [φ](0).

In the presence of trapping: no quantitative energy decay estimate
possible without loss of derivatives (Ralston, 1969).

Generalisation to trapped null geodesics in Lorentzian manifolds:
Sbierski, 2013.

What can be said for general O independently of the nature of trapping?
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A result of Burq for general O

Theorem (Burq, 1998)

Without any assumptions on the geometry of O, we have:

ER [φ](t) ≤ C(
log(2 + t)

)2m E
(m)[φ](0).

C depends on m, R and the size of the initial support of φ.

The result also holds for the wave equation �gφ = 0 when
g = −dt2 + ḡ , with ḡ being a compact perturbation of the
Euclidean metric on Rd .
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g = −dt2 + ḡ , with ḡ being a compact perturbation of the
Euclidean metric on Rd .



Decay on general product spacetimes

Simple non-trivial examples of asymptotically flat spacetimes: Product
spacetimes

(
R×M,−dt2 + ḡ

)
, where (M, ḡ) is a Riemannian manifold.

E [φ](τ) =
´
M
(∣∣∂tφ∣∣2 +

∣∣∇̄φ∣∣2
ḡ

)
dḡ is conserved for �gφ = 0.

Trapped null geodesics act as an obstruction to decay.

Can the result of Burq be generalised in this setting?

Theorem (Rodnianski–Tao, 2011)

On a general asymptotically conic Riemannian manifold (M, ḡ), the
unique solution u ∈ H2(M) of Δḡu − (ω+ iε)2u = F satisfies:

ˆ
M

r−1−η
+

(
|∇u|2 + ω2|u|2

)
dḡ ≤ CeC |ω|

ˆ
M

r1+η
+ |F |2 dḡ .

Consequence: Solutions of �gφ = 0 on the product spacetime
(R×M, g = −dt2 + ḡ) satisfy

E≤R [φ](t) ≤ Cm,R

(
log(2 + t)

)−2mE (m)
w [φ](0).



Decay on general product spacetimes

Simple non-trivial examples of asymptotically flat spacetimes: Product
spacetimes

(
R×M,−dt2 + ḡ
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ˆ
M

r−1−η
+

(
|∇u|2 + ω2|u|2

)
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dḡ ≤ CeC |ω|

ˆ
M

r1+η
+ |F |2 dḡ .
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unique solution u ∈ H2(M) of Δḡu − (ω+ iε)2u = F satisfies:
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Going beyond product spacetimes

In the general class of stationary and asymptotically flat spacetimes
(M, g), one encounters geometric features which are absent in the case
of product spacetimes.

Event horizon H (black hole exterior spacetime). In many interestng
cases, H is also a Killing horizon, with Killing generator V .

d
(
g(V ,V )

)
|H 6= 0: Non-degenerate horizon, red-shift effect acts as

a decay mechanism for scalar waves (Dafermos–Rodnianski).

d
(
g(V ,V )

)
|H = 0: Degenerate (extremal) horizon, absence of

red-shift leads to a mix of stability and instability mechanisms
(Aretakis, Aretakis–Angelopoulos–Gajic).

Ergoregion:

E
.

=
{
p ∈M : g(Tp,Tp) > 0

}
6= ∅.

where T is the stationary Killing field.

Superradiance for scalar waves acts as an obstacle to stability.
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A decay result on general spacetimes with small ergoregion

Theorem (M., 2015)

Let (Md+1, g), d ≥ 3, be a stationary and asymptotically flat spacetime,
possibly possessing a non-degenerate event horizon H and a small
ergoregion E . Assume that all solutions φ to �gφ = 0 satisfy

E [φ](τ) ≤ CE [φ](0).

Then,

E≤R [φ](τ) ≤ CRmε

(
log(τ+ 2)

)−2mE (m)[φ](0) + CRετ
−εEε[φ](0),

where

E (m)[φ](0) =
m∑
j=0

ˆ
{t=0}

∣∣∇T j
φ

∣∣2 dgΣ,
Eε[φ](0) =

ˆ
{t=0}

r ε+
∣∣∇T j

φ

∣∣2 dgΣ.
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A decay result on general spacetimes with small ergoregion

Remarks:

No assumption is imposed on the trapped set or the topology of the
near region.

In the case H = ∅, the condition on the smallness of E implies that
E = ∅ and T is everywhere timelike.

In the case E 6= ∅, the energy boundedness assumption can not be
inferred from the rest of the assumptions: Counterexamples can be
constructed by suitable deformations of the subextremal Kerr metric
(M., 2016).

The local energy E≤R [φ](τ) can be replaced by the energy flux of φ
through a hyperboloidal foliation terminating at I+.

Pointwise estimates can also be obtained.
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Sketch of the proof

The proof is based on seperating φ into frequency decomposed
components. The error terms from the cut-off procedure are controlled
by the energy boundedness assumption.
Let ω+ � 1. Splitting φ = φ≤ω+

+ φ≥ω+
:

E≤R [φ](t) . E≤R [φ≤ω+
](t) + E≤R [φ≥ω+

](t)

Since φ≥ω+
has frequency support in {ω & ω+}:

E≤R [φ≥ω+
](t) ≤ CRmω

−2m
+

m∑
j=0

E [T j
φ](0).

Assume that

E≤R [φ≤ω+
](t) ≤ CRεt

−ε
(
eCRω+E [φ](0) + Eε[φ](0)

)
.

Then choosing ω+ ∼ εC−1
R log t:

E≤R [φ](t) ≤ CRmε

(
log(t + 2)

)−2mE (m)[φ](0) + CRεt
−εEε[φ](0).

Decay on hyperboloids: By using the rp-weighted energy method of
Dafermos–Rodnianski (Dafermos–Rodnianski, 2009; M., 2015).
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Sketch the proof

In order to obtain a polynomial decay estimate for φ≤ω+
: It suffices to

show: ˆ +∞

0

E≤R [φ≤ω+
](t) dt ≤ CRe

CRω+E [φ](0).

Decompose φ≤ω+
into components φk , 0 ≤ k ≤ dlog2(ω−1

0 ω+)e
with frequency support around ωk ∼ 2k

ω0.

For k ≥ 1: Carleman-type estimates, using the fact that
∂tφk ∼ iωkφk (using ideas from Burq and Rodnianski–Tao).

For k = 0: Separate argument.

Remark. The energy boundedness assumption is used in a critical way in
the proof of the Carleman estimates.
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Spacetimes with an evanescent ergosurface

The inverse logaritmic decay rate does not persist for spacetimes with
H = ∅,E = ∅ possessing an evanescent ergosurface.

Two charge supersymmetric geometries:

Ē≤R [φ](τ) ≥ Cm,R

( log log(τ+ 2)

log(τ+ 2)

)2m

Ē (m)
w [φ](0),

for φ depending trivially on the compact directions.

Proof: Keir 2016, earlier numerics: Eperon–Reall–Santos (2016)

Question: What happens if H = ∅ but E 6= ∅?
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Spacetimes with H = ∅, E 6= ∅

Assume that (M, g):

is asymptotically flat

is stationary, with stationary Killing field T

has a non-empty ergoregion.

every point of M communicates causaly with the asymptotically flat
region

Then there exist solutions φ to �gφ = 0 such that

E [φ](0) =

ˆ
{t=0}

JT
μ

(φ)nμ = −1.

For any such solution and any τ ≥ 0 (Friedman, 1978):

EE [φ](τ) =

ˆ
{t=τ}∩E

JT
μ

(φ)nμ ≤ −1.
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Friedman’s ergoregion instability

Conjecture (Friedman, 1978)

On such a spacetime (M, g), there exist solutions φ to �gφ = 0 such
that the non-degenerate energy flux of φ through {t = τ} blows up as
τ→ +∞.

Heuristic justification: Friedman (assuming that (M, g) is globally
real analytic)

Numerical investigation: Comins–Schutz, Yoshida–Eriguchi,...

Rigorous proof?
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Friedman’s ergoregion instability

Theorem (M., 2016)

Suppose that (Md+1, g), d ≥ 2, is as above, satisfying in addition the
following unique continuation condition:

UC condition: There exists a point p ∈ ∂E and an open neighborhood U
of p in M such that, for any H1

loc solution ψ̃ to �g ψ̃ = 0

on M with ψ̃ ≡ 0 on M\E , we have ψ̃ = 0 on E ∩ U .

Then, there exists a smooth φ solving �gφ = 0 with compactly
supported initial data , such that

lim sup
τ→+∞

ˆ
{t=τ}

|∇φ|2 = +∞.



Friedman’s ergoregion instability

Remarks:

No assumption on (M, g) being real analytic is necessary.

The proof also applies in the case when (M, g) has a non-empty
future event horizon H+ with positive surface gravity, such that
H+ ∩ E = ∅.

Examples of spacetimes where the unique continuation condition
holds:

Axisymmetric spacetimes with axisymmetric Killing field Φ, such that
[T ,Φ] = 0 and the span of T ,Φ is timelike on ∂E
Spacetimes which are real analytic in a neighborhood of ∂E .

There exist spacetimes violating the unique continuation condition.



Friedman’s ergoregion instability

Remarks:

No assumption on (M, g) being real analytic is necessary.

The proof also applies in the case when (M, g) has a non-empty
future event horizon H+ with positive surface gravity, such that
H+ ∩ E = ∅.

Examples of spacetimes where the unique continuation condition
holds:

Axisymmetric spacetimes with axisymmetric Killing field Φ, such that
[T ,Φ] = 0 and the span of T ,Φ is timelike on ∂E
Spacetimes which are real analytic in a neighborhood of ∂E .

There exist spacetimes violating the unique continuation condition.



Friedman’s ergoregion instability

Remarks:

No assumption on (M, g) being real analytic is necessary.

The proof also applies in the case when (M, g) has a non-empty
future event horizon H+ with positive surface gravity, such that
H+ ∩ E = ∅.

Examples of spacetimes where the unique continuation condition
holds:

Axisymmetric spacetimes with axisymmetric Killing field Φ, such that
[T ,Φ] = 0 and the span of T ,Φ is timelike on ∂E
Spacetimes which are real analytic in a neighborhood of ∂E .

There exist spacetimes violating the unique continuation condition.



Friedman’s ergoregion instability

Remarks:

No assumption on (M, g) being real analytic is necessary.

The proof also applies in the case when (M, g) has a non-empty
future event horizon H+ with positive surface gravity, such that
H+ ∩ E = ∅.

Examples of spacetimes where the unique continuation condition
holds:

Axisymmetric spacetimes with axisymmetric Killing field Φ, such that
[T ,Φ] = 0 and the span of T ,Φ is timelike on ∂E
Spacetimes which are real analytic in a neighborhood of ∂E .

There exist spacetimes violating the unique continuation condition.



Friedman’s ergoregion instability

Remarks:

No assumption on (M, g) being real analytic is necessary.

The proof also applies in the case when (M, g) has a non-empty
future event horizon H+ with positive surface gravity, such that
H+ ∩ E = ∅.

Examples of spacetimes where the unique continuation condition
holds:

Axisymmetric spacetimes with axisymmetric Killing field Φ, such that
[T ,Φ] = 0 and the span of T ,Φ is timelike on ∂E
Spacetimes which are real analytic in a neighborhood of ∂E .

There exist spacetimes violating the unique continuation condition.



Applications

Applications:

General relativity: Scalar wave equation on rapidly rotating
self-gravitating dense fluids (Butterworth–Ipser).

Fluid mechanics: Acoustic wave equation on a steady irrotational
flow with a supersonic region and no acoustic horizon.

Example (Cardoso–Crispino–Oliveira): The hydrodynamic vortex
(R× (R2\0), ghyd):

ghyd = −
(
1− C 2

r 2

)
dt2 + dr 2 − 2Cdtdθ+ r 2dθ2.
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Sketch of the proof

The proof proceeds by contradiction, assuming that all smooth solutions
φ to �gφ = 0 satisfy

lim sup
τ→+∞

ˆ
{t=τ}

|∇φ|2 < +∞. (1)

Let ψ = Tφ, for a solution φ of �gφ = 0 with compactly supported
initial data to be chosen later.
Using the methods of the logarithmic decay result, (1) implies that for
any ε > 0, any R,T , τ0 � 1 and any 0 < δ < 1, there exists a τ∗ ≥ τ0
such that: ˆ

{τ∗−T≤t≤τ∗+T}∩{r≤R}\Eδ

(
|∇ψ|2 + |ψ|2

)
< ε. (2)

(1), (2) =⇒There exists a function ψ̃ ∈ H1
loc(M) such that:

ψ(t + τn, x)→ ψ̃(t, x) and Tψ(t + τn, x)→ T ψ̃(t, x) weakly in
H1

loc(M) and strongly in L2
loc(M), for a sequence τn → +∞.

ψ̃ ≡ 0 on M\E
�g ψ̃ = 0

Unique continuation condition =⇒ ψ̃ ≡ 0 in U
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Sketch of the proof

It is possible to choose the initial data for φ (and thus for ψ = Tφ) on
{t = 0} so that:

(ψ,Tψ)|t=0 is supported in U ∩ E´
{t=0} J

T
μ

(ψ)nμ = −1

Conservation of the T -energy flux: For all τ ≥ 0

ˆ
{t=τ}∩E

JT
μ

(ψ)nμ ≤ −1.

Alternative formula for energy:

ˆ
{t=τ}

JT
μ

(ψ)nμ =

ˆ
{t=τ}

Re
{
Tψ · nψ̄− ψ · n(T ψ̄)

}
.

So: ˆ
{t=0}

JT
μ

(ψ̃)nμ ≤ −1. (3)



Sketch of the proof

It is possible to choose the initial data for φ (and thus for ψ = Tφ) on
{t = 0} so that:

(ψ,Tψ)|t=0 is supported in U ∩ E´
{t=0} J

T
μ

(ψ)nμ = −1

Conservation of the T -energy flux: For all τ ≥ 0

ˆ
{t=τ}∩E

JT
μ

(ψ)nμ ≤ −1.

Alternative formula for energy:

ˆ
{t=τ}

JT
μ

(ψ)nμ =

ˆ
{t=τ}

Re
{
Tψ · nψ̄− ψ · n(T ψ̄)

}
.

So: ˆ
{t=0}

JT
μ

(ψ̃)nμ ≤ −1. (3)



Sketch of the proof

It is possible to choose the initial data for φ (and thus for ψ = Tφ) on
{t = 0} so that:

(ψ,Tψ)|t=0 is supported in U ∩ E´
{t=0} J

T
μ

(ψ)nμ = −1

Conservation of the T -energy flux: For all τ ≥ 0

ˆ
{t=τ}∩E

JT
μ

(ψ)nμ ≤ −1.

Alternative formula for energy:

ˆ
{t=τ}

JT
μ

(ψ)nμ =

ˆ
{t=τ}

Re
{
Tψ · nψ̄− ψ · n(T ψ̄)

}
.

So: ˆ
{t=0}

JT
μ

(ψ̃)nμ ≤ −1. (3)



Sketch of the proof

It is possible to choose the initial data for φ (and thus for ψ = Tφ) on
{t = 0} so that:

(ψ,Tψ)|t=0 is supported in U ∩ E´
{t=0} J

T
μ

(ψ)nμ = −1

Conservation of the T -energy flux: For all τ ≥ 0

ˆ
{t=τ}∩E

JT
μ

(ψ)nμ ≤ −1.

Alternative formula for energy:

ˆ
{t=τ}

JT
μ

(ψ)nμ =

ˆ
{t=τ}

Re
{
Tψ · nψ̄− ψ · n(T ψ̄)

}
.

So: ˆ
{t=0}

JT
μ

(ψ̃)nμ ≤ −1. (3)



Sketch of the proof

It is possible to choose the initial data for φ (and thus for ψ = Tφ) on
{t = 0} so that:

(ψ,Tψ)|t=0 is supported in U ∩ E´
{t=0} J

T
μ

(ψ)nμ = −1

Conservation of the T -energy flux: For all τ ≥ 0

ˆ
{t=τ}∩E

JT
μ

(ψ)nμ ≤ −1.

Alternative formula for energy:

ˆ
{t=τ}

JT
μ

(ψ)nμ =

ˆ
{t=τ}

Re
{
Tψ · nψ̄− ψ · n(T ψ̄)

}
.

So: ˆ
{t=0}

JT
μ

(ψ̃)nμ ≤ −1. (3)



Sketch of the proof

Indefinite inner product associated to the T -energy:

〈φ1,φ2〉T ,τ =

ˆ
{t=τ}

1

2
Re
{
Tφ1nφ̄2 + nφ1T φ̄2 − g(T , n)∂αφ1∂αφ̄2

}
.

For all τ ≥ 0:
〈
ψ,F−τψ̃

〉
T ,0

= 0, where F−τψ̃(t, x) = ψ̃(t − τ, x).

Conservation of the inner product:
〈
ψ,F−τψ̃

〉
T ,τ

= 0.

Equivalently:
〈
Fτψ, ψ̃

〉
T ,0

= 0.

Therefore, for τ = τn → +∞:
ˆ
{t=0}

JT
μ

(ψ̃)nμ =
〈
ψ̃, ψ̃

〉
T ,0

= 0. (4)

(3) & (4): Contradiction!
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Thank you for your attention!


