The scalar wave equation on general asymptotically flat spacetimes: Stability and instability results

Georgios Moschidis

Princeton University

Université Pierre et Marie Curie
Paris, 30.01.2017
Structure of the talk

Introduction:
\[\psi = 0 \text{ on asymptotically flat backgrounds } (M, g) \]
and decay properties on \((\mathbb{R}^d + 1, \eta)\).

Decay in the exterior of a smooth compact obstacle \(O \subset \mathbb{R}^d\): A result of Burq.

Decay on product Lorentzian manifolds: A result of Rodnianski–Tao.

A decay result for general asymptotically flat black hole spacetimes with a small ergoregion.

Decay in the presence of an evanescent ergosurface.

Proof of Friedman's instability for spacetimes with an ergoregion and no event horizon.
Structure of the talk

- Introduction: $\Box_g \psi = 0$ on asymptotically flat backgrounds (\mathcal{M}, g) and decay properties on (\mathbb{R}^{d+1}, η).
 - Decay in the exterior of a smooth compact obstacle $O \subset \mathbb{R}^{d+1}$: A result of Burq.
 - Decay on product Lorentzian manifolds: A result of Rodnianski–Tao.
 - A decay result for general asymptotically flat black hole spacetimes with a small ergoregion.
 - Decay in the presence of an evanescent ergosurface.
 - Proof of Friedman's instability for spacetimes with an ergoregion and no event horizon.
Introduction: $\Box_g \psi = 0$ on asymptotically flat backgrounds (\mathcal{M}, g) and decay properties on (\mathbb{R}^{d+1}, η).

Decay in the exterior of a smooth compact obstacle $\mathcal{O} \subset \mathbb{R}^d$: A result of Burq.
Structure of the talk

- Introduction: $\Box_g \psi = 0$ on asymptotically flat backgrounds (\mathcal{M}, g) and decay properties on (\mathbb{R}^{d+1}, η).

- Decay in the exterior of a smooth compact obstacle $\mathcal{O} \subset \mathbb{R}^d$: A result of Burq.

- Decay on product Lorentzian manifolds: A result of Rodnianski–Tao.
Structure of the talk

- Introduction: □_g ψ = 0 on asymptotically flat backgrounds (\(\mathcal{M}, g\)) and decay properties on (\(\mathbb{R}^{d+1}, \eta\)).

- Decay in the exterior of a smooth compact obstacle \(\mathcal{O} \subset \mathbb{R}^d\): A result of Burq.

- Decay on product Lorentzian manifolds: A result of Rodnianski–Tao.

- A decay result for general asymptotically flat black hole spacetimes with a small ergoregion.
Introduction: $\Box_g \psi = 0$ on asymptotically flat backgrounds (\mathcal{M}, g) and decay properties on (\mathbb{R}^{d+1}, η).

- Decay in the exterior of a smooth compact obstacle $\mathcal{O} \subset \mathbb{R}^d$: A result of Burq.
- Decay on product Lorentzian manifolds: A result of Rodnianski–Tao.
- A decay result for general asymptotically flat black hole spacetimes with a small ergoregion.
- Decay in the presence of an evanescent ergosurface.
Structure of the talk

• Introduction: $\Box_g \psi = 0$ on asymptotically flat backgrounds (\mathcal{M}, g) and decay properties on (\mathbb{R}^{d+1}, η).

• Decay in the exterior of a smooth compact obstacle $\mathcal{O} \subset \mathbb{R}^d$: A result of Burq.

• Decay on product Lorentzian manifolds: A result of Rodnianski–Tao.

• A decay result for general asymptotically flat black hole spacetimes with a small ergoregion.

• Decay in the presence of an evanescent ergosurface.

• Proof of Friedman’s instability for spacetimes with an ergoregion and no event horizon.
Introduction: The wave equation on asymptotically flat backgrounds

\[
\Box_g \phi = \frac{1}{\sqrt{-g}} \partial_\mu \left(\sqrt{-g} \partial_\nu \phi \right) = 0.
\]

Appears frequently in mathematical physics:

Fluid mechanics:

- \(g \) is the acoustical metric of a fluid in motion

General relativity:

- \(g \) is the spacetime metric of a 3 + 1 dimensional model of our universe.

We will only consider backgrounds \((M, g)\) which are globally hyperbolic.

The initial value problem with initial data on a Cauchy hypersurface \(\Sigma \) is well defined.

We will call \((M, g)\) asymptotically flat if \(g \) approaches the Minkowski metric \(\eta \) asymptotically, where

\[
\eta = -dt^2 + dx_1 + \cdots + (dx_d)^2.
\]
Introduction: The wave equation on asymptotically flat backgrounds

Scalar wave equation on \((\mathcal{M}^{d+1}, g)\):

\[\Box_g \phi = \frac{1}{\sqrt{-g}} \partial_\mu (g^{\mu\nu} \sqrt{-g} \partial_\nu \phi) = 0. \]
Introduction: The wave equation on asymptotically flat backgrounds

Scalar wave equation on \((\mathcal{M}^{d+1}, g)\):

\[\Box_g \varphi = \frac{1}{\sqrt{-g}} \partial_\mu (g^{\mu \nu} \sqrt{-g} \partial_\nu \varphi) = 0. \]

Appears frequently in mathematical physics:
Introduction: The wave equation on asymptotically flat backgrounds

Scalar wave equation on (\mathcal{M}^{d+1}, g):

$$\square_g \varphi = \frac{1}{\sqrt{-g}} \partial_\mu (g^{\mu\nu} \sqrt{-g} \partial_\nu \varphi) = 0.$$

Appears frequently in mathematical physics:

- Fluid mechanics: g is the acoustical metric of a fluid in motion
Introduction: The wave equation on asymptotically flat backgrounds

Scalar wave equation on \((\mathcal{M}^{d+1}, g)\):

\[
\Box_{g} \varphi = \frac{1}{\sqrt{-g}} \partial_{\mu} \left(g^{\mu \nu} \sqrt{-g} \partial_{\nu} \varphi \right) = 0.
\]

Appears frequently in mathematical physics:

- Fluid mechanics: \(g\) is the acoustical metric of a fluid in motion
- General relativity: \(g\) is the spacetime metric of a 3 + 1 dimensional model of our universe.
Introduction: The wave equation on asymptotically flat backgrounds

Scalar wave equation on \((\mathcal{M}^{d+1}, g)\):

\[
\Box_g \varphi = \frac{1}{\sqrt{-g}} \partial_\mu (g^{\mu\nu} \sqrt{-g} \partial_\nu \varphi) = 0.
\]

Appears frequently in mathematical physics:

- Fluid mechanics: \(g\) is the acoustical metric of a fluid in motion
- General relativity: \(g\) is the spacetime metric of a 3 + 1 dimensional model of our universe.

We will only consider backgrounds \((\mathcal{M}, g)\) which are globally hyperbolic.
Introduction: The wave equation on asymptotically flat backgrounds

Scalar wave equation on \((\mathcal{M}^{d+1}, g)\):

\[
\Box_g \varphi = \frac{1}{\sqrt{-g}} \partial_\mu (g^{\mu\nu} \sqrt{-g} \partial_\nu \varphi) = 0.
\]

Appears frequently in mathematical physics:

- **Fluid mechanics:** \(g\) is the acoustical metric of a fluid in motion
- **General relativity:** \(g\) is the spacetime metric of a 3 + 1 dimensional model of our universe.

We will only consider backgrounds \((\mathcal{M}, g)\) which are globally hyperbolic.

- The initial value problem with initial data on a Cauchy hypersurface \(\Sigma\) is well defined.
Introduction: The wave equation on asymptotically flat backgrounds

Scalar wave equation on \((M^{d+1}, g)\):

\[
\Box_g \phi = \frac{1}{\sqrt{-g}} \partial_\mu (g^{\mu\nu} \sqrt{-g} \partial_\nu \phi) = 0.
\]

Appears frequently in mathematical physics:

- Fluid mechanics: \(g\) is the acoustical metric of a fluid in motion
- General relativity: \(g\) is the spacetime metric of a 3 + 1 dimensional model of our universe.

We will only consider backgrounds \((M, g)\) which are globally hyperbolic.

- The initial value problem with initial data on a Cauchy hypersurface \(\Sigma\) is well defined.

We will call \((M, g)\) asymptotically flat if \(g\) approaches the Minkowski metric \(\eta\) asymptotically, where

\[
\eta = -dt^2 + dx^1 + \cdots + (dx^d)^2.
\]
The wave equation on \((\mathbb{R}^{d+1}, \eta)\)

The simplest example of an asymptotically flat spacetime: Minkowski spacetime \((\mathbb{R}^{d+1}, \eta)\).

Wave equation:

\[\Box \eta \phi = -\partial^2_t \phi + \partial^2 \phi_{x_1} + \ldots + \partial^2 \phi_{x_d} = 0. \]

Conservation of energy: For all \(t \in \mathbb{R}\),

\[E[\phi](t) = \hat{\mathbb{R}}^{d} \mid \mid \nabla \phi(t, x) \mid \mid^2 \, dx = E[\phi](0). \]

Local energy decay:

\[E \leq R[\phi](t) \leq C R(1 + t)^{-2} \hat{\{t=0\}} r^2 + \mid \mid \nabla \phi \mid \mid^2 \, dx. \]

Pointwise decay estimates:

\[|\phi| \leq C \left(1 + \frac{|t - r|}{2} \right)^{-\frac{1}{2}} \left(1 + t + r \right)^{-\frac{d-1}{2}} \left(\left\lceil \frac{d+1}{2} \right\rceil \sum_{j=1}^{\hat{\{t=0\}}} r^2_j + |\nabla_j \phi| \right)^{\frac{1}{2}}. \]

Valid on small radiating perturbations of \((\mathbb{R}^{d+1}, \eta)\).
The simplest example of an asymptotically flat spacetime: Minkowski spacetime \((\mathbb{R}^{d+1}, \eta)\). Wave equation:

\[
\Box_\eta \varphi = -\partial_t^2 \varphi + \partial_{x_1}^2 \varphi + \ldots + \partial_{x_d}^2 \varphi = 0.
\]
The simplest example of an asymptotically flat spacetime: Minkowski spacetime \((\mathbb{R}^{d+1}, \eta)\). Wave equation:

\[
\Box_\eta \varphi = -\partial_t^2 \varphi + \partial_{x_1}^2 \varphi + \ldots + \partial_{x_d}^2 \varphi = 0.
\]

- Conservation of energy: For all \(t \in \mathbb{R}\),

\[
\mathcal{E}[\varphi](t) \doteq \int_{\mathbb{R}^d} |\nabla \varphi(t, x)|^2 \, dx = \mathcal{E}[\varphi](0).
\]
The wave equation on \((\mathbb{R}^{d+1}, \eta)\)

The simplest example of an asymptotically flat spacetime: Minkowski spacetime \((\mathbb{R}^{d+1}, \eta)\). Wave equation:

\[
\Box_\eta \varphi = -\partial_t^2 \varphi + \partial_{x_1}^2 \varphi + \ldots + \partial_{x_d}^2 \varphi = 0.
\]

- Conservation of energy: For all \(t \in \mathbb{R}\),

\[
\mathcal{E}[\varphi](t) = \int_{\mathbb{R}^d} |\nabla \varphi(t, x)|^2 \, dx = \mathcal{E}[\varphi](0).
\]

- Local energy decay:

\[
\mathcal{E}_{\leq R}[\varphi](t) \leq C_R (1 + t)^{-2} \int_{\{t=0\}} r_+^2 |\nabla \varphi|^2 \, dx.
\]
The wave equation on \mathbb{R}^{d+1}, η

The simplest example of an asymptotically flat spacetime: Minkowski spacetime (\mathbb{R}^{d+1}, η). Wave equation:

$$\Box_{\eta} \varphi = -\partial_{t}^{2} \varphi + \partial_{x_{1}}^{2} \varphi + \ldots + \partial_{x_{d}}^{2} \varphi = 0.$$

- Conservation of energy: For all $t \in \mathbb{R}$,

$$\mathcal{E}[\varphi](t) = \int_{\mathbb{R}^{d}} |\nabla \varphi(t, x)|^{2} \, dx = \mathcal{E}[\varphi](0).$$

- Local energy decay:

$$\mathcal{E}_{\leq R}[\varphi](t) \leq C_{R} (1 + t)^{-2} \int_{\{t=0\}} r_{+}^{2} |\nabla \varphi|^{2} \, dx.$$

- Pointwise decay estimates:

$$|\varphi| \leq C (1 + |t - r|)^{-\frac{1}{2}} (1 + t + r)^{-\frac{d-1}{2}} \left(\sum_{j=1}^{\left\lfloor \frac{d+1}{2} \right\rfloor} \int_{\{t=0\}} r_{+}^{2j} |\nabla^{j} \varphi|^{2} \, dx \right)^{\frac{1}{2}}.$$
The wave equation on \((\mathbb{R}^{d+1}, \eta)\)

The simplest example of an asymptotically flat spacetime: Minkowski spacetime \((\mathbb{R}^{d+1}, \eta)\). Wave equation:

\[
\Box_\eta \varphi = -\partial_t^2 \varphi + \partial_{x_1}^2 \varphi + \ldots + \partial_{x_d}^2 \varphi = 0.
\]

- Conservation of energy: For all \(t \in \mathbb{R}\),
 \[
 \mathcal{E}[\varphi](t) = \int_{\mathbb{R}^d} \left| \nabla \varphi(t, x) \right|^2 dx = \mathcal{E}[\varphi](0).
 \]

- Local energy decay:
 \[
 \mathcal{E}_{\leq R}[\varphi](t) \leq C_R (1 + t)^{-2} \int_{\{t=0\}} r_+^2 \left| \nabla \varphi \right|^2 dx.
 \]

- Pointwise decay estimates:
 \[
 |\varphi| \leq C (1 + |t - r|)^{-\frac{1}{2}} (1 + t + r)^{-\frac{d-1}{2}} \left(\sum_{j=1}^{\lfloor \frac{d+1}{2} \rfloor} \int_{\{t=0\}} r_+^{2j} |\nabla^j \varphi|^2 dx \right)^{\frac{1}{2}}.
 \]

- Valid on small radiating perturbations of \((\mathbb{R}^{d+1}, \eta)\)
The exterior of an obstacle \mathcal{O} in \mathbb{R}^d
Let \mathcal{O} be a compact open subset of \mathbb{R}^d with smooth boundary $\partial \mathcal{O}$. Equation $\Box \eta \varphi = 0$ on $\mathcal{M} = \mathbb{R} \times (\mathbb{R}^d \setminus \mathcal{O})$ with Dirichlet or Neumann boundary conditions on $\partial \mathcal{O}$ has been extensively studied in the last 50 years.
The exterior of an obstacle \mathcal{O} in \mathbb{R}^d

Let \mathcal{O} be a compact open subset of \mathbb{R}^d with smooth boundary $\partial\mathcal{O}$. Equation $\Box_\eta\varphi = 0$ on $\mathcal{M} = \mathbb{R} \times (\mathbb{R}^d \setminus \mathcal{O})$ with Dirichlet or Neumann boundary conditions on $\partial\mathcal{O}$ has been extensively studied in the last 50 years.

- Conservation of the energy

$$E[\varphi](t) = \int_{\mathbb{R}^d \setminus \mathcal{O}} |\nabla \varphi(t, x)|^2 \, dx,$$

yields boundedness estimates for φ and its derivatives, as well as decay without a rate.
Let \mathcal{O} be a compact open subset of \mathbb{R}^d with smooth boundary $\partial \mathcal{O}$. Equation $\Box \eta \phi = 0$ on $\mathcal{M} = \mathbb{R} \times (\mathbb{R}^d \setminus \mathcal{O})$ with Dirichlet or Neumann boundary conditions on $\partial \mathcal{O}$ has been extensively studied in the last 50 years.

- Conservation of the energy

\[E[\phi](t) = \int_{\mathbb{R}^d \setminus \mathcal{O}} |\nabla \phi(t, x)|^2 \, dx, \]

yields boundedness estimates for ϕ and its derivatives, as well as decay without a rate.

- Quantitative decay estimates: Trapping enters the picture.
The exterior of an obstacle \mathcal{O} in \mathbb{R}^d

In the absence of trapping: Morawetz, Ralston and Strauss (1977) showed that

$$\hat{\|E\|} \leq R \left[\phi(t) \right] \leq C R \left[\phi(0) \right].$$

In the presence of trapping: no quantitative energy decay estimate possible without loss of derivatives (Ralston, 1969).

Generalisation to trapped null geodesics in Lorentzian manifolds: Sbierski, 2013.

What can be said for general \mathcal{O} independently of the nature of trapping?
In the absence of trapping: Morawetz, Ralston and Strauss (1977) showed that

\[\int_0^{+\infty} \mathcal{E}_{\leq R}[\varphi](t) \, dt \leq C_R \mathcal{E}[\varphi](0). \]
The exterior of an obstacle \mathcal{O} in \mathbb{R}^d

In the absence of trapping: Morawetz, Ralston and Strauss (1977) showed that

$$\int_0^{+\infty} \mathcal{E}_{\leq R}[\varphi](t) \, dt \leq C_R \mathcal{E}[\varphi](0).$$

In the presence of trapping: no quantitative energy decay estimate possible without loss of derivatives (Ralston, 1969).

Generalisation to trapped null geodesics in Lorentzian manifolds: Sbierski, 2013.

What can be said for general \mathcal{O} independently of the nature of trapping?
In the absence of trapping: Morawetz, Ralston and Strauss (1977) showed that
\[\int_0^{+\infty} \mathcal{E}_{\leq R}[\varphi](t) \, dt \leq C_R \mathcal{E}[\varphi](0). \]

In the presence of trapping: no quantitative energy decay estimate possible without loss of derivatives (Ralston, 1969).

- Generalisation to trapped null geodesics in Lorentzian manifolds: Sbierski, 2013.
In the absence of trapping: Morawetz, Ralston and Strauss (1977) showed that
\[\int_0^{+\infty} \mathcal{E}_{\leq R}[\varphi](t) \, dt \leq C_R \mathcal{E}[\varphi](0). \]

In the presence of trapping: no quantitative energy decay estimate possible without loss of derivatives (Ralston, 1969).

- Generalisation to trapped null geodesics in Lorentzian manifolds: Sbierski, 2013.

What can be said for general \mathcal{O} independently of the nature of trapping?
A result of Burq for general \mathcal{O}. Without any assumptions on the geometry of \mathcal{O}, we have:

$$E_{\mathbb{R}}[\phi(t)] \leq C(\log(2 + t))^{2m} E[\phi(0)].$$

C depends on m, R, and the size of the initial support of ϕ. The result also holds for the wave equation $\Box g\phi = 0$ when $g = -dt^2 + \bar{g}$, with \bar{g} being a compact perturbation of the Euclidean metric on \mathbb{R}^d.
A result of Burq for general \mathcal{O}

Theorem (Burq, 1998)

Without any assumptions on the geometry of \mathcal{O}, we have:

$$\mathcal{E}_R[\varphi](t) \leq \frac{C}{(\log(2 + t))^{2m}} \mathcal{E}^{(m)}[\varphi](0).$$

C depends on m, R and the size of the initial support of φ. The result also holds for the wave equation $\Box g \varphi = 0$ when $g = -dt^2 + \bar{g}$, with \bar{g} being a compact perturbation of the Euclidean metric on \mathbb{R}^d.
A result of Burq for general \mathcal{O}

Theorem (Burq, 1998)

Without any assumptions on the geometry of \mathcal{O}, we have:

$$\mathcal{E}_R[\varphi](t) \leq \frac{C}{(\log(2 + t))^{2m}} \mathcal{E}^{(m)}[\varphi](0).$$

- C depends on m, R and the size of the initial support of φ.

A result of Burq for general O

Theorem (Burq, 1998)

Without any assumptions on the geometry of O, we have:

$$\mathcal{E}_R[\varphi](t) \leq \frac{C}{(\log(2 + t))^{2m}} \mathcal{E}^{(m)}[\varphi](0).$$

- C depends on m, R and the size of the initial support of φ.

- The result also holds for the wave equation $\Box_g \varphi = 0$ when $g = -dt^2 + \bar{g}$, with \bar{g} being a compact perturbation of the Euclidean metric on \mathbb{R}^d.
Decay on general product spacetimes

Simple non-trivial examples of asymptotically flat spacetimes: Product spacetimes $(\mathbb{R} \times M, -dt^2 + \bar{g})$, where (M, \bar{g}) is a Riemannian manifold.

$E[\phi](\tau) = \int_M (|\partial_t \phi|^2 + |\bar{\nabla} \phi|^2 \bar{g}) \, d\bar{g}$ is conserved for $\Box_g \phi = 0$.

Trapped null geodesics act as an obstruction to decay.

Can the result of Burq be generalised in this setting?

Theorem (Rodnianski–Tao, 2011)

On a general asymptotically conic Riemannian manifold (M, \bar{g}), the unique solution $u \in H^2(M)$ of $\Delta \bar{g} u - (\omega + i \epsilon)^2 u = F$ satisfies:

$$\hat{M} \frac{-1 - \eta}{m} + \left(|\nabla u|^2 + \omega^2 |u|^2 \right) \, d\bar{g} \leq C \epsilon \frac{1 + \eta}{m} |\omega| \hat{M} \frac{1}{m} |F|^2 \, d\bar{g}.$$
Decay on general product spacetimes

Simple non-trivial examples of asymptotically flat spacetimes: Product spacetimes \((\mathbb{R} \times \mathcal{M}, -dt^2 + \bar{g})\), where \((\mathcal{M}, \bar{g})\) is a Riemannian manifold.
Decay on general product spacetimes

Simple non-trivial examples of asymptotically flat spacetimes: Product spacetimes \((\mathbb{R} \times \overline{M}, -dt^2 + \bar{g})\), where \((\overline{M}, \bar{g})\) is a Riemannian manifold.

- \(\mathcal{E}[\phi](\tau) = \int_{\overline{M}} \left(|\partial_t \phi|^2 + |\bar{\nabla} \phi|^2 \right) d\bar{g}\) is conserved for \(\square_g \phi = 0\).
Decay on general product spacetimes

Simple non-trivial examples of asymptotically flat spacetimes: Product spacetimes \((\mathbb{R} \times \overline{M}, -dt^2 + \bar{g})\), where \((\overline{M}, \bar{g})\) is a Riemannian manifold.

- \(\mathcal{E}[\phi](\tau) = \int_{\overline{M}} \left(|\partial_t \phi|^2 + |\nabla_{\bar{g}} \phi|^2 \right) d\bar{g}\) is conserved for \(\Box_g \phi = 0\).
- Trapped null geodesics act as an obstruction to decay.
Decay on general product spacetimes

Simple non-trivial examples of asymptotically flat spacetimes: Product spacetimes \((\mathbb{R} \times \overline{M}, -dt^2 + \bar{g})\), where \((\overline{M}, \bar{g})\) is a Riemannian manifold.

- \(\mathcal{E}[\phi](\tau) = \int_{\overline{M}} \left(|\partial_t \phi|^2 + |\nabla \phi|^2_\bar{g} \right) d\bar{g}\) is conserved for \(\Box_g \phi = 0\).

- Trapped null geodesics act as an obstruction to decay.

Can the result of Burq be generalised in this setting?
Decay on general product spacetimes

Simple non-trivial examples of asymptotically flat spacetimes: Product spacetimes \((\mathbb{R} \times \overline{M}, -dt^2 + \bar{g})\), where \((\overline{M}, \bar{g})\) is a Riemannian manifold.

- \(\mathcal{E}[\phi](\tau) = \int_{\mathcal{M}} (|\partial_t \phi|^2 + |\nabla \phi|^2_{\bar{g}}) \, d\bar{g}\) is conserved for \(\Box_g \phi = 0\).

- Trapped null geodesics act as an obstruction to decay.

Can the result of Burq be generalised in this setting?

Theorem (Rodnianski–Tao, 2011)

On a general asymptotically conic Riemannian manifold \((\overline{M}, \bar{g})\), the unique solution \(u \in H^2(\mathcal{M})\) of \(\Delta_{\bar{g}} u - (\omega + i\epsilon)^2 u = F\) satisfies:

\[
\int_{\mathcal{M}} r_+^{-1-\eta} (|\nabla u|^2 + \omega^2 |u|^2) \, d\bar{g} \leq C e^{C|\omega|} \int_{\mathcal{M}} r_+^{1+\eta} |F|^2 \, d\bar{g}.
\]
Decay on general product spacetimes

Simple non-trivial examples of asymptotically flat spacetimes: Product spacetimes \((\mathbb{R} \times \overline{M}, -dt^2 + \bar{g})\), where \((\overline{M}, \bar{g})\) is a Riemannian manifold.

- \(\mathcal{E}[\varphi](\tau) = \int_{\overline{M}} \left(|\partial_t \varphi|^2 + |\nabla_{\bar{g}} \varphi|^2_{\bar{g}} \right) d\bar{g}\) is conserved for \(\Box_g \varphi = 0\).

- Trapped null geodesics act as an obstruction to decay.

Can the result of Burq be generalised in this setting?

Theorem (Rodnianski–Tao, 2011)

On a general asymptotically conic Riemannian manifold \((\overline{M}, \bar{g})\), the unique solution \(u \in H^2(M)\) of \(\Delta_{\bar{g}} u - (\omega + i\epsilon)^2 u = F\) satisfies:

\[
\int_{\overline{M}} r_+^{1-\eta} \left(|\nabla u|^2 + \omega^2 |u|^2 \right) d\bar{g} \leq C e^{C|\omega|} \int_{\overline{M}} r_+^{1+\eta} |F|^2 d\bar{g}.
\]

- Consequence: Solutions of \(\Box_g \varphi = 0\) on the product spacetime \((\mathbb{R} \times \overline{M}, g = -dt^2 + \bar{g})\) satisfy

\[
\mathcal{E}_{\leq R}[\varphi](t) \leq C_{m,R} \left(\log(2 + t) \right)^{-2m} \mathcal{E}_w^{(m)}[\varphi](0).
\]
Going beyond product spacetimes

In the general class of stationary and asymptotically flat spacetimes \((\mathcal{M}, g)\), one encounters geometric features which are absent in the case of product spacetimes.

Event horizon \(\mathcal{H}\) (black hole exterior spacetime). In many interesting cases, \(\mathcal{H}\) is also a Killing horizon, with Killing generator \(V\).

\[
\left. \frac{\partial}{\partial t} \right|_{\mathcal{H}} \neq 0: \text{Non-degenerate horizon, red-shift effect acts as a decay mechanism for scalar waves (Dafermos–Rodnianski)}.
\]

\[
\left. \frac{\partial}{\partial t} \right|_{\mathcal{H}} = 0: \text{Degenerate (extremal) horizon, absence of red-shift leads to a mix of stability and instability mechanisms (Aretakis, Aretakis–Angelopoulos–Gajic)}.
\]

Ergoregion: \(\mathcal{E} = \{ p \in \mathcal{M} : \frac{(T_p T_p)}{g(T_p T_p)} > 0 \} \neq \emptyset\), where \(T\) is the stationary Killing field.

Superradiance for scalar waves acts as an obstacle to stability.
Going beyond product spacetimes

In the general class of stationary and asymptotically flat spacetimes (\mathcal{M}, g), one encounters geometric features which are absent in the case of product spacetimes.
Going beyond product spacetimes

In the general class of stationary and asymptotically flat spacetimes (\mathcal{M}, g), one encounters geometric features which are absent in the case of product spacetimes.

- **Event horizon** \mathcal{H} (black hole exterior spacetime). In many interesting cases, \mathcal{H} is also a *Killing* horizon, with Killing generator V.
Going beyond product spacetimes

In the general class of stationary and asymptotically flat spacetimes \((\mathcal{M}, g) \), one encounters geometric features which are absent in the case of product spacetimes.

- **Event horizon** \(\mathcal{H} \) (black hole exterior spacetime). In many interesting cases, \(\mathcal{H} \) is also a **Killing** horizon, with Killing generator \(V \).
 - \(d(g(V, V))|_{\mathcal{H}} \neq 0 \): Non-degenerate horizon, red-shift effect acts as a decay mechanism for scalar waves (Dafermos–Rodnianski).
Going beyond product spacetimes

In the general class of stationary and asymptotically flat spacetimes \((\mathcal{M}, g)\), one encounters geometric features which are absent in the case of product spacetimes.

- **Event horizon** \(\mathcal{H}\) (black hole exterior spacetime). In many interesting cases, \(\mathcal{H}\) is also a *Killing* horizon, with Killing generator \(V\).

 - \(d(g(V, V))|_{\mathcal{H}} \neq 0\): Non-degenerate horizon, red-shift effect acts as a decay mechanism for scalar waves (Dafermos–Rodnianski).

 - \(d(g(V, V))|_{\mathcal{H}} = 0\): Degenerate (extremal) horizon, absence of red-shift leads to a mix of stability and instability mechanisms (Aretakis, Aretakis–Angelopoulos–Gajic).
Going beyond product spacetimes

In the general class of stationary and asymptotically flat spacetimes \((\mathcal{M}, g)\), one encounters geometric features which are absent in the case of product spacetimes.

- **Event horizon** \(\mathcal{H}\) (black hole exterior spacetime). In many interesting cases, \(\mathcal{H}\) is also a *Killing* horizon, with Killing generator \(V\).
 - \(d(g(V, V))|_{\mathcal{H}} \neq 0\): Non-degenerate horizon, red-shift effect acts as a decay mechanism for scalar waves (Dafermos–Rodnianski).
 - \(d(g(V, V))|_{\mathcal{H}} = 0\): Degenerate (extremal) horizon, absence of red-shift leads to a mix of stability and instability mechanisms (Aretakis, Aretakis–Angelopoulos–Gajic).

- **Ergoregion**:

\[
\mathcal{E} \doteq \left\{ p \in \mathcal{M} : g(T_p, T_p) > 0 \right\} \neq \emptyset.
\]

where \(T\) is the stationary Killing field.
Going beyond product spacetimes

In the general class of stationary and asymptotically flat spacetimes \((\mathcal{M}, g)\), one encounters geometric features which are absent in the case of product spacetimes.

- **Event horizon** \(\mathcal{H}\) (black hole exterior spacetime). In many interesting cases, \(\mathcal{H}\) is also a *Killing* horizon, with Killing generator \(V\).
 - \(d(g(V, V))|_{\mathcal{H}} \neq 0\): Non-degenerate horizon, red-shift effect acts as a decay mechanism for scalar waves (Dafermos–Rodnianski).
 - \(d(g(V, V))|_{\mathcal{H}} = 0\): Degenerate (extremal) horizon, absence of red-shift leads to a mix of stability and instability mechanisms (Aretakis, Aretakis–Angelopoulos–Gajic).

- **Ergoregion**:

 \[
 \mathcal{E} \doteq \left\{ p \in \mathcal{M} : g(T_p, T_p) > 0 \right\} \neq \emptyset.
 \]

 where \(T\) is the stationary Killing field.

 - Superradiance for scalar waves acts as an obstacle to stability.
Going beyond product spacetimes

Question:
Do the decay results of Burq and Rodnianski–Tao extend to the case of general stationary and asymptotically flat spacetimes, possibly with a non-degenerate event horizon and a small ergoregion?
Going beyond product spacetimes

Question: Do the decay results of Burq and Rodnianski–Tao extend to the case of general stationary and asymptotically flat spacetimes, possibly with a non-degenerate event horizon and a small ergoregion?
A decay result on general spacetimes with small ergoregion

Theorem (M., 2015)

Let \((M, g)\), \(d \geq 3\), be a stationary and asymptotically flat spacetime, possibly possessing a non-degenerate event horizon \(H\) and a small ergoregion \(E\). Assume that all solutions \(\phi\) to \(\Box g \phi = 0\) satisfy

\[E \left[\phi \right](\tau) \leq C E \left[\phi \right](0)\]

Then,

\[E \leq \mathcal{R} \left[\phi \right](\tau) \leq C \mathcal{R} m \varepsilon \left(\log(\tau + 2) \right) - 2 m E(m) \left[\phi \right](0) + C \mathcal{R} \varepsilon \tau^{-\varepsilon} E\left[\phi \right](0),\]

where

\[E(m) \left[\phi \right](0) = \sum_{j=0}^{\hat{t}} \left| \nabla_{\Sigma} T_j \phi \right|^2 dg,\]

\[E\varepsilon \left[\phi \right](0) = \hat{t} r \varepsilon + \left| \nabla_{\Sigma} T_j \phi \right|^2 dg.\]
A decay result on general spacetimes with small ergoregion

Theorem (M., 2015)

Let \((M^{d+1}, g), d \geq 3\), be a stationary and asymptotically flat spacetime, possibly possessing a non-degenerate event horizon \(\mathcal{H}\) and a small ergoregion \(\mathcal{E}\). Assume that all solutions \(\varphi\) to \(\Box_g \varphi = 0\) satisfy

\[
\mathcal{E}[\varphi](\tau) \leq C \mathcal{E}[\varphi](0).
\]

Then,

\[
\mathcal{E}_{\leq R}[\varphi](\tau) \leq C R m \left(\log(\tau + 2) \right)^{-2m} \mathcal{E}^{(m)}[\varphi](0) + C R \varepsilon \tau^{-\varepsilon} \mathcal{E}_\varepsilon[\varphi](0),
\]

where

\[
\mathcal{E}^{(m)}[\varphi](0) = \sum_{j=0}^{m} \int_{\{t=0\}} \left| \nabla T^j \varphi \right|^2 \, dg_{\Sigma},
\]

\[
\mathcal{E}_\varepsilon[\varphi](0) = \int_{\{t=0\}} r_+^\varepsilon \left| \nabla T^j \varphi \right|^2 \, dg_{\Sigma}.
\]
A decay result on general spacetimes with small ergoregion

Remarks:
No assumption is imposed on the trapped set or the topology of the near region.
In the case $H = \emptyset$, the condition on the smallness of E implies that $E = \emptyset$ and T is everywhere timelike.
In the case $E \neq \emptyset$, the energy boundedness assumption cannot be inferred from the rest of the assumptions: Counterexamples can be constructed by suitable deformations of the subextremal Kerr metric (M., 2016).
The local energy $E \leq R[\phi](\tau)$ can be replaced by the energy flux of ϕ through a hyperboloidal foliation terminating at I^+. Pointwise estimates can also be obtained.
A decay result on general spacetimes with small ergoregion

Remarks:
Remarks:

- No assumption is imposed on the trapped set or the topology of the near region.
A decay result on general spacetimes with small ergoregion

Remarks:

- No assumption is imposed on the trapped set or the topology of the near region.

- In the case $\mathcal{H} = \emptyset$, the condition on the smallness of \mathcal{E} implies that $\mathcal{E} = \emptyset$ and T is everywhere timelike.
Remarks:

- No assumption is imposed on the trapped set or the topology of the near region.

- In the case $\mathcal{H} = \emptyset$, the condition on the smallness of \mathcal{E} implies that $\mathcal{E} = \emptyset$ and T is everywhere timelike.

- In the case $\mathcal{E} \neq \emptyset$, the energy boundedness assumption can not be inferred from the rest of the assumptions: Counterexamples can be constructed by suitable deformations of the subextremal Kerr metric (M., 2016).
Remarks:

- No assumption is imposed on the trapped set or the topology of the near region.

- In the case $\mathcal{H} = \emptyset$, the condition on the smallness of \mathcal{E} implies that $\mathcal{E} = \emptyset$ and T is everywhere timelike.

- In the case $\mathcal{E} \neq \emptyset$, the energy boundedness assumption cannot be inferred from the rest of the assumptions: Counterexamples can be constructed by suitable deformations of the subextremal Kerr metric (M., 2016).

- The local energy $\mathcal{E}_{\leq R}[\varphi](\tau)$ can be replaced by the energy flux of φ through a hyperboloidal foliation terminating at I^+.
Remarks:

- No assumption is imposed on the trapped set or the topology of the near region.

- In the case $\mathcal{H} = \emptyset$, the condition on the smallness of \mathcal{E} implies that $\mathcal{E} = \emptyset$ and T is everywhere timelike.

- In the case $\mathcal{E} \neq \emptyset$, the energy boundedness assumption cannot be inferred from the rest of the assumptions: Counterexamples can be constructed by suitable deformations of the subextremal Kerr metric (M., 2016).

- The local energy $\mathcal{E}_{\leq R}[\varphi](\tau)$ can be replaced by the energy flux of φ through a hyperboloidal foliation terminating at \mathcal{I}^+.

- Pointwise estimates can also be obtained.
Sketch of the proof

The proof is based on separating ϕ into frequency decomposed components. The error terms from the cut-off procedure are controlled by the energy boundedness assumption.

Let $\omega \gg 1$. Splitting $\phi = \phi_{\leq \omega} + \phi_{\geq \omega}$:

$$E \leq R[\phi](t) \lesssim E \leq R[\phi_{\leq \omega}](t) + E \leq R[\phi_{\geq \omega}](t).$$

Since $\phi_{\geq \omega}$ has frequency support in $\{\omega \gtrsim \omega + \}:

$$E \leq R[\phi_{\geq \omega}](t) \leq C R \omega^{m} - 2 m \sum_{j=0}^{m} E[T_{j}\phi](0).$$

Assume that $E \leq R[\phi_{\leq \omega}](t) \leq C R \varepsilon t^{-\varepsilon} (e C R \omega + E[\phi](0) + E[\phi](0))$.

Then choosing $\omega \sim \varepsilon C - 1 R \log t$:

$$E \leq R[\phi](t) \leq C R \varepsilon (\log(t+2)) - 2 m E^{(m)}[\phi](0) + C R \varepsilon t^{-\varepsilon} E[\phi](0).$$

Sketch of the proof

The proof is based on separating φ into frequency decomposed components. The error terms from the cut-off procedure are controlled by the energy boundedness assumption.

Let $\omega + \gg 1$. Splitting $\varphi = \varphi \leq \omega + \varphi \geq \omega +$:

$$E \leq R[\varphi](t) \lesssim E \leq R[\varphi \leq \omega +](t) + E \leq R[\varphi \geq \omega +](t)$$

Since $\varphi \geq \omega +$ has frequency support in $\{\omega \gg \omega +\}$:

$$E \leq R[\varphi \geq \omega +](t) \leq C R \varepsilon t^{-\varepsilon} (e C R \omega + E[\varphi](0) + E[\varphi](0))$$

Then choosing $\omega + \sim \varepsilon C^{-1} R \log t$:

$$E \leq R[\varphi](t) \leq C R \varepsilon (\log(t + 2))^{-2} E[m][\varphi](0) + C R \varepsilon t^{-\varepsilon} E[\varphi](0)$$

Sketch of the proof

The proof is based on separating φ into frequency decomposed components. The error terms from the cut-off procedure are controlled by the energy boundedness assumption.

Let $\omega_+ \gg 1$. Splitting $\varphi = \varphi_{\leq \omega_+} + \varphi_{\geq \omega_+}$:

$$E_{\leq R}[\varphi](t) \lesssim E_{\leq R}[\varphi_{\leq \omega_+}](t) + E_{\leq R}[\varphi_{\geq \omega_+}](t)$$
Sketch of the proof

The proof is based on separating \(\varphi \) into frequency decomposed components. The error terms from the cut-off procedure are controlled by the energy boundedness assumption.

Let \(\omega_+ \gg 1 \). Splitting \(\varphi = \varphi_{\leq \omega_+} + \varphi_{\geq \omega_+} \):

\[
\mathcal{E}_{\leq R}[\varphi](t) \lesssim \mathcal{E}_{\leq R}[\varphi_{\leq \omega_+}](t) + \mathcal{E}_{\leq R}[\varphi_{\geq \omega_+}](t)
\]

- Since \(\varphi_{\geq \omega_+} \) has frequency support in \(\{ \omega \gtrsim \omega_+ \} \):

\[
\mathcal{E}_{\leq R}[\varphi_{\geq \omega_+}](t) \leq C_R m \omega_+^{-2m} \sum_{j=0}^{m} \mathcal{E}[T^j \varphi](0).
\]
Sketch of the proof

The proof is based on separating φ into frequency decomposed components. The error terms from the cut-off procedure are controlled by the energy boundedness assumption.
Let $\omega_+ \gg 1$. Splitting $\varphi = \varphi_{\leq \omega_+} + \varphi_{\geq \omega_+}$:

$$\mathcal{E}_{\leq R}[\varphi](t) \lesssim \mathcal{E}_{\leq R}[\varphi_{\leq \omega_+}](t) + \mathcal{E}_{\leq R}[\varphi_{\geq \omega_+}](t)$$

- Since $\varphi_{\geq \omega_+}$ has frequency support in $\{\omega \gtrsim \omega_+\}$:

$$\mathcal{E}_{\leq R}[\varphi_{\geq \omega_+}](t) \leq C_R m \omega_+^{-2m} \sum_{j=0}^{m} \mathcal{E}[T^j \varphi](0).$$

- Assume that

$$\mathcal{E}_{\leq R}[\varphi_{\leq \omega_+}](t) \leq C_R \epsilon t^{-\epsilon} \left(e^{C_R \omega_+} \mathcal{E}[\varphi](0) + \mathcal{E}_\epsilon[\varphi](0) \right).$$

Then choosing $\omega_+ \sim \epsilon C_R^{-1} \log t$:

$$\mathcal{E}_{\leq R}[\varphi](t) \leq C_R m \epsilon \left(\log(t + 2) \right)^{-2m} \mathcal{E}^{(m)}[\varphi](0) + C_R \epsilon t^{-\epsilon} \mathcal{E}_\epsilon[\varphi](0).$$
Sketch of the proof

The proof is based on separating φ into frequency decomposed components. The error terms from the cut-off procedure are controlled by the energy boundedness assumption.

Let $\omega_+ \gg 1$. Splitting $\varphi = \varphi_{\leq \omega_+} + \varphi_{\geq \omega_+}$:

$$E_{\leq R}[\varphi](t) \lesssim E_{\leq R}[\varphi_{\leq \omega_+}](t) + E_{\leq R}[\varphi_{\geq \omega_+}](t)$$

- Since $\varphi_{\geq \omega_+}$ has frequency support in $\{\omega \gtrsim \omega_+\}$:

$$E_{\leq R}[\varphi_{\geq \omega_+}](t) \leq C_R m \omega_+^{-2m} \sum_{j=0}^{m} E[T^j \varphi](0).$$

- Assume that

$$E_{\leq R}[\varphi_{\leq \omega_+}](t) \leq C_{R\varepsilon} t^{-\varepsilon} \left(e^{C_{R\omega_+} E[\varphi](0)} \right) + E_{\varepsilon}[\varphi](0).$$

Then choosing $\omega_+ \sim \varepsilon C_R^{-1} \log t$:

$$E_{\leq R}[\varphi](t) \leq C_{Rm\varepsilon} (\log(t + 2))^{-2m} E^{(m)}[\varphi](0) + C_{R\varepsilon} t^{-\varepsilon} E_{\varepsilon}[\varphi](0).$$

Sketch the proof

In order to obtain a polynomial decay estimate for $\phi \leq \omega + \epsilon$: It suffices to show:

$$\hat{\phi} \leq R \left[\phi \leq \omega + \epsilon \right] (t) dt \leq C R e^{C R \omega + E [\phi](0)}.$$

Decompose $\phi \leq \omega$ into components $\phi_k, 0 \leq k \leq \lceil \log_2 (\omega - \omega_0) \rceil$ with frequency support around $\omega_k \sim 2^k \omega_0$.

For $k \geq 1$: Carleman-type estimates, using the fact that $\partial_t \phi_k \sim i \omega_k \phi_k$ (using ideas from Burq and Rodnianski–Tao).

For $k = 0$: Separate argument.

Remark. The energy boundedness assumption is used in a critical way in the proof of the Carleman estimates.
Sketch the proof

In order to obtain a polynomial decay estimate for \(\varphi_{\leq \omega^+} \): It suffices to show:

\[
\int_0^{+\infty} \mathcal{E}_{\leq R}[\varphi_{\leq \omega^+}](t) \, dt \leq C R e^{C R \omega^+} \mathcal{E}[\varphi](0).
\]
Sketch the proof

In order to obtain a polynomial decay estimate for $\varphi_{\leq \omega_+}$: It suffices to show:

$$\int_0^{+\infty} E_{\leq R}[(\varphi_{\leq \omega_+})(t)] dt \leq C_R e^{C_R \omega_+} E[\varphi](0).$$

- Decompose $\varphi_{\leq \omega_+}$ into components φ_k, $0 \leq k \leq \lceil \log_2(\omega_0^{-1} \omega_) \rceil$ with frequency support around $\omega_k \sim 2^k \omega_0$.

Remark. The energy boundedness assumption is used in a critical way in the proof of the Carleman estimates.
In order to obtain a polynomial decay estimate for $\varphi_{\leq \omega_+}$: It suffices to show:

$$\int_0^{+\infty} \mathcal{E}_{\leq R}[\varphi_{\leq \omega_+}](t) \, dt \leq C_R e^{C_R \omega_+} \mathcal{E}[\varphi](0).$$

- Decompose $\varphi_{\leq \omega_+}$ into components φ_k, $0 \leq k \leq \lceil \log_2(\omega_0^{-1} \omega_+) \rceil$ with frequency support around $\omega_k \sim 2^k \omega_0$.

- For $k \geq 1$: Carleman-type estimates, using the fact that $\partial_t \varphi_k \sim i \omega_k \varphi_k$ (using ideas from Burq and Rodnianski–Tao).
Sketch the proof

In order to obtain a polynomial decay estimate for $\varphi_{\leq \omega_+}$: It suffices to show:

$$\int_0^{+\infty} \mathcal{E}_{\leq R}[\varphi_{\leq \omega_+}](t) \, dt \leq C_R e^{C_R \omega_+} \mathcal{E}[\varphi](0).$$

- Decompose $\varphi_{\leq \omega_+}$ into components φ_k, $0 \leq k \leq \lceil \log_2(\omega_0^{-1} \omega_+) \rceil$ with frequency support around $\omega_k \sim 2^k \omega_0$.

- For $k \geq 1$: Carleman-type estimates, using the fact that $\partial_t \varphi_k \sim i \omega_k \varphi_k$ (using ideas from Burq and Rodnianski–Tao).

- For $k = 0$: Separate argument.

Remark. The energy boundedness assumption is used in a critical way in the proof of the Carleman estimates.
In order to obtain a polynomial decay estimate for $\varphi_{\leq \omega^+}$: It suffices to show:

$$\int_0^{+\infty} \mathcal{E}_{\leq R}[\varphi_{\leq \omega^+}](t) \, dt \leq C_R e^{C_R \omega^+} \mathcal{E}[\varphi](0).$$

- Decompose $\varphi_{\leq \omega^+}$ into components φ_k, $0 \leq k \leq \lceil \log_2(\omega_0^{-1} \omega^+) \rceil$ with frequency support around $\omega_k \sim 2^k \omega_0$.

- For $k \geq 1$: Carleman-type estimates, using the fact that $\partial_t \varphi_k \sim i \omega_k \varphi_k$ (using ideas from Burq and Rodnianski–Tao).

- For $k = 0$: Separate argument.

Remark. The energy boundedness assumption is used in a critical way in the proof of the Carleman estimates.
Spacetimes with an evanescent ergosurface

The inverse logaritmic decay rate does not persist for spacetimes with $H = \emptyset$, $E = \emptyset$ possessing an evanescent ergosurface.

Two charge supersymmetric geometries:

$\overline{E} \leq R[\phi](\tau) \geq Cm, R(\log \log (\tau + 2))^{2m} \overline{E}(m)[w][\phi](0)$,

for ϕ depending trivially on the compact directions.

Question: What happens if $H = \emptyset$ but $E \neq \emptyset$?
Spacetimes with an evanescent ergosurface

The inverse logarithmic decay rate does not persist for spacetimes with \(\mathcal{H} = \emptyset, \mathcal{E} = \emptyset \) possessing an evanescent ergosurface.
The inverse logarithmic decay rate does not persist for spacetimes with $\mathcal{H} = \emptyset$, $\mathcal{E} = \emptyset$ possessing an evanescent ergosurface.

- **Two charge supersymmetric geometries:**

 \[
 \bar{\mathcal{E}}_{\leq R}[\varphi](\tau) \geq C_{m, R} \left(\frac{\log \log (\tau + 2)}{\log (\tau + 2)} \right)^{2m} \bar{\mathcal{E}}^{(m)}_{w}[\varphi](0),
 \]

 for φ depending trivially on the compact directions.

Question: What happens if $\mathcal{H} = \emptyset$ but $\mathcal{E} \neq \emptyset$?
Spacetimes with an evanescent ergosurface

The inverse logarithmic decay rate does not persist for spacetimes with \(\mathcal{H} = \emptyset, \mathcal{E} = \emptyset \) possessing an evanescent ergosurface.

- Two charge supersymmetric geometries:

\[
\bar{\mathcal{E}}_{\leq R}[\varphi](\tau) \geq C_{m,R} \left(\frac{\log \log(\tau + 2)}{\log(\tau + 2)} \right)^{2m} \bar{\mathcal{E}}_{w}^{(m)}[\varphi](0),
\]

for \(\varphi \) depending trivially on the compact directions.

Spacetimes with an evanescent ergosurface

The inverse logarithmic decay rate does not persist for spacetimes with \(\mathcal{H} = \emptyset, \mathcal{E} = \emptyset \) possessing an *evanescent ergosurface*.

- Two charge supersymmetric geometries:

\[
\bar{E}_{\leq R}[\varphi](\tau) \geq C_{m,R}\left(\frac{\log \log (\tau + 2)}{\log (\tau + 2)}\right)^{2m} \bar{E}^{(m)}[\varphi](0),
\]

for \(\varphi \) depending trivially on the compact directions.

Question: What happens if \(\mathcal{H} = \emptyset \) but \(\mathcal{E} \neq \emptyset \)?
Spacetimes with $\mathcal{H} = \emptyset$, $\mathcal{E} \neq \emptyset$

Assume that (M, g) is asymptotically flat, is stationary, with stationary Killing field T has a non-empty ergoregion. Every point of M communicates causally with the asymptotically flat region. Then there exist solutions ϕ to $\Box_g \phi = 0$ such that $E[\phi](0) = \hat{\{t = 0\}} J T^\mu(\phi) n_\mu = -1$.

For any such solution and any $\tau \geq 0$ (Friedman, 1978): $E[\phi](\tau) = \hat{\{t = \tau\}} \cap E J T^\mu(\phi) n_\mu \leq -1.$
Spacetimes with $\mathcal{H} = \emptyset, \mathcal{E} \neq \emptyset$

Assume that (\mathcal{M}, g):

Then there exist solutions ϕ to $\Box g \phi = 0$ such that $E[\phi](0) = \hat{\{t = 0\}} J T^\mu(\phi) n^\mu = -1$.

For any such solution and any $\tau \geq 0$ (Friedman, 1978): $E[\phi](\tau) = \hat{\{t = \tau\}} \cap E J T^\mu(\phi) n^\mu \leq -1$.
Assume that (\mathcal{M}, g):

- is asymptotically flat
- is stationary, with stationary Killing field T
- has a non-empty ergoregion.
- every point of \mathcal{M} communicates causaly with the asymptotically flat region
Spacetimes with $\mathcal{H} = \emptyset$, $\mathcal{E} \neq \emptyset$

Assume that \mathcal{M}, g:

- is asymptotically flat
- is stationary, with stationary Killing field T
- has a non-empty ergoregion.
- every point of \mathcal{M} communicates causally with the asymptotically flat region

Then there exist solutions φ to $\Box_g \varphi = 0$ such that

$$\mathcal{E}[\varphi](0) = \int_{\{t=0\}} J^T_\mu(\varphi)n^\mu = -1.$$
Assume that \((\mathcal{M}, g)\):

- is asymptotically flat
- is stationary, with stationary Killing field \(T\)
- has a non-empty ergoregion.
- every point of \(\mathcal{M}\) communicates causally with the asymptotically flat region

Then there exist solutions \(\varphi\) to \(\Box_g \varphi = 0\) such that

\[
\mathcal{E}[\varphi](0) = \int_{\{t=0\}} J^T_\mu(\varphi) n^\mu = -1.
\]

For any such solution and any \(\tau \geq 0\) (Friedman, 1978):

\[
\mathcal{E}_{\mathcal{E}}[\varphi](\tau) = \int_{\{t=\tau\} \cap \mathcal{E}} J^T_\mu(\varphi) n^\mu \leq -1.
\]
Friedman’s ergoregion instability

Conjecture (Friedman, 1978)

On such a spacetime \((\mathcal{M}, g)\), there exist solutions \(\varphi\) to \(\Box_g \varphi = 0\) such that the non-degenerate energy flux of \(\varphi\) through \(\{t = \tau\}\) blows up as \(\tau \to +\infty\).
Friedman’s ergoregion instability

Conjecture (Friedman, 1978)

On such a spacetime \((M, g)\), there exist solutions \(\varphi\) to \(\Box_g \varphi = 0\) such that the non-degenerate energy flux of \(\varphi\) through \(\{t = \tau\}\) blows up as \(\tau \to +\infty\).

- Heuristic justification: Friedman (assuming that \((M, g)\) is globally real analytic)
Conjecture (Friedman, 1978)

On such a spacetime \((M, g)\), there exist solutions \(\varphi\) to \(\Box_g \varphi = 0\) such that the non-degenerate energy flux of \(\varphi\) through \(\{t = \tau\}\) blows up as \(\tau \to +\infty\).

- Heuristic justification: Friedman (assuming that \((M, g)\) is globally real analytic)
- Numerical investigation: Comins–Schutz, Yoshida–Eriguchi,...
Friedman’s ergoregion instability

Conjecture (Friedman, 1978)

On such a spacetime \((\mathcal{M}, g)\), there exist solutions \(\varphi\) to \(\Box_g \varphi = 0\) such that the non-degenerate energy flux of \(\varphi\) through \(\{t = \tau\}\) blows up as \(\tau \to +\infty\).

- Heuristic justification: Friedman (assuming that \((\mathcal{M}, g)\) is globally real analytic)
- Numerical investigation: Comins–Schutz, Yoshida–Eriguchi,...
- Rigorous proof?
Theorem (M., 2016)

Suppose that \((\mathcal{M}^{d+1}, g), d \geq 2 \), is as above, satisfying in addition the following unique continuation condition:

UC condition: There exists a point \(p \in \partial E \) and an open neighborhood \(\mathcal{U} \) of \(p \) in \(\mathcal{M} \) such that, for any \(H^1_{loc} \) solution \(\tilde{\psi} \) to \(\square_g \tilde{\psi} = 0 \) on \(\mathcal{M} \) with \(\tilde{\psi} \equiv 0 \) on \(\mathcal{M} \setminus E \), we have \(\tilde{\psi} = 0 \) on \(E \cap \mathcal{U} \).

Then, there exists a smooth \(\varphi \) solving \(\square_g \varphi = 0 \) with compactly supported initial data, such that

\[
\limsup_{\tau \to +\infty} \int_{\{t=\tau\}} |\nabla \varphi|^2 = +\infty.
\]
Friedman’s ergoregion instability

Remarks:

No assumption on \((M, g)\) being real analytic is necessary. The proof also applies in the case when \((M, g)\) has a non-empty future event horizon \(H^+\) with positive surface gravity, such that \(H^+ \cap E = \emptyset\).

Examples of spacetimes where the unique continuation condition holds:

- Axisymmetric spacetimes with axisymmetric Killing field \(\Phi\), such that \([T, \Phi] = 0\) and the span of \(T, \Phi\) is timelike on \(\partial E\).
- Spacetimes which are real analytic in a neighborhood of \(\partial E\).

There exist spacetimes violating the unique continuation condition.
Remarks:

- No assumption on \((\mathcal{M}, g)\) being real analytic is necessary.
Remarks:

- No assumption on (\mathcal{M}, g) being real analytic is necessary.

- The proof also applies in the case when (\mathcal{M}, g) has a non-empty future event horizon \mathcal{H}^+ with positive surface gravity, such that $\mathcal{H}^+ \cap \mathcal{E} = \emptyset$.

Examples of spacetimes where the unique continuation condition holds:

- Axisymmetric spacetimes with axisymmetric Killing field Φ, such that $[T, \Phi] = 0$ and the span of T, Φ is timelike on $\partial \mathcal{E}$.

- Spacetimes which are real analytic in a neighborhood of $\partial \mathcal{E}$.

There exist spacetimes violating the unique continuation condition.
Friedman’s ergoregion instability

Remarks:

- No assumption on \((\mathcal{M}, g)\) being real analytic is necessary.

- The proof also applies in the case when \((\mathcal{M}, g)\) has a non-empty future event horizon \(\mathcal{H}^+\) with positive surface gravity, such that \(\mathcal{H}^+ \cap \mathcal{E} = \emptyset\).

- Examples of spacetimes where the unique continuation condition holds:
 - Axisymmetric spacetimes with axisymmetric Killing field \(\Phi\), such that \([T, \Phi] = 0\) and the span of \(T, \Phi\) is timelike on \(\partial \mathcal{E}\).
 - Spacetimes which are real analytic in a neighborhood of \(\partial \mathcal{E}\).
Remarks:

- No assumption on \((\mathcal{M}, g)\) being real analytic is necessary.

- The proof also applies in the case when \((\mathcal{M}, g)\) has a non-empty future event horizon \(\mathcal{H}^+\) with positive surface gravity, such that \(\mathcal{H}^+ \cap \mathcal{E} = \emptyset\).

- Examples of spacetimes where the unique continuation condition holds:
 - Axisymmetric spacetimes with axisymmetric Killing field \(\Phi\), such that \([T, \Phi] = 0\) and the span of \(T, \Phi\) is timelike on \(\partial \mathcal{E}\).
 - Spacetimes which are real analytic in a neighborhood of \(\partial \mathcal{E}\).

- There exist spacetimes violating the unique continuation condition.
Applications

General relativity: Scalar wave equation on rapidly rotating self-gravitating dense fluids (Butterworth–Ipser).

Fluid mechanics: Acoustic wave equation on a steady irrotational flow with a supersonic region and no acoustic horizon.

Example (Cardoso–Crispino–Oliveira): The hydrodynamic vortex \((\mathbb{R} \times (\mathbb{R}^2 \setminus \{0\}), g_{\text{hyd}})\):

\[
g_{\text{hyd}} = -(1 - C_2 r^2) dt^2 + dr^2 - 2 C_1 dt d\theta + r^2 d\theta^2.
\]
Applications:

- General relativity: Scalar wave equation on rapidly rotating self-gravitating dense fluids (Butterworth–Ipser).
- Fluid mechanics: Acoustic wave equation on a steady irrotational flow with a supersonic region and no acoustic horizon.
- Example (Cardoso–Crispino–Oliveira): The hydrodynamic vortex $\mathbb{R} \times (\mathbb{R}^2 \setminus 0)$:

 $$g_{\text{hyd}} = -\left(1 - C^2 r^2\right) dt^2 + dr^2 - 2Cdtd\theta + r^2 d\theta^2.$$
Applications:

- General relativity: Scalar wave equation on rapidly rotating self-gravitating dense fluids (Butterworth–Ipser).

\[g_{\text{hyd}} = -\left(1 - C^2 r^2\right) dt^2 + dr^2 - 2C dt d\theta + r^2 d\theta^2. \]
Applications:

- General relativity: Scalar wave equation on rapidly rotating self-gravitating dense fluids (Butterworth–Ipser).

- Fluid mechanics: Acoustic wave equation on a steady irrotational flow with a supersonic region and no acoustic horizon.
 - Example (Cardoso–Crispino–Oliveira): The hydrodynamic vortex
 \((\mathbb{R} \times (\mathbb{R}^2 \backslash 0), g_{hyd})\):

\[
g_{hyd} = -\left(1 - \frac{C^2}{r^2}\right)dt^2 + dr^2 - 2Cdt\,d\theta + r^2\,d\theta^2.
\]
Applications:

- General relativity: Scalar wave equation on rapidly rotating self-gravitating dense fluids (Butterworth–Ipser).

- Fluid mechanics: Acoustic wave equation on a steady irrotational flow with a supersonic region and no acoustic horizon.

 Example (Cardoso–Crispino–Oliveira): The hydrodynamic vortex \((\mathbb{R} \times (\mathbb{R}^2 \setminus 0), g_{\text{hyd}})\):

 \[
g_{\text{hyd}} = -(1 - \frac{C^2}{r^2}) dt^2 + dr^2 - 2 C dt d\theta + r^2 d\theta^2.
 \]
Sketch of the proof

The proof proceeds by contradiction, assuming that all smooth solutions φ to $\Box g \varphi = 0$ satisfy

$$\limsup_{\tau \to +\infty} \{ t = \tau \} |\nabla \varphi|^2 < +\infty.$$ \hfill (1)

Let $\psi = T \varphi$, for a solution φ of $\Box g \varphi = 0$ with compactly supported initial data to be chosen later.

Using the methods of the logarithmic decay result, (1) implies that for any $\varepsilon > 0$, any $R, T, \tau_0 \gg 1$ and any $0 < \delta < 1$, there exists a $\tau^* \geq \tau_0$ such that:

$$\hat{\{ \tau^* - T \leq t \leq \tau^* + T \} \cap \{ r \leq R \} \setminus E_{\delta}(|\nabla \psi|^2 + |\psi|^2) < \varepsilon.$$ \hfill (2)

(1), (2) \Rightarrow There exists a function $\tilde{\psi} \in H^1_{\text{loc}}(M)$ such that:

$$\psi(t + \tau_n, x) \to \tilde{\psi}(t, x) \text{ and } T \psi(t + \tau_n, x) \to T \tilde{\psi}(t, x) \text{ weakly in } H^1_{\text{loc}}(M) \text{ and strongly in } L^2_{\text{loc}}(M),$$

for a sequence $\tau_n \to +\infty$.

$\tilde{\psi} \equiv 0$ on $M \setminus E$

$\Box g \tilde{\psi} = 0$

Unique continuation condition $\Rightarrow \tilde{\psi} \equiv 0$ in U.

Sketch of the proof

The proof proceeds by contradiction, assuming that all smooth solutions \(\varphi \) to \(\Box_g \varphi = 0 \) satisfy

\[
\limsup_{\tau \to +\infty} \int_{\{t = \tau\}} |\nabla \varphi|^2 < +\infty. \tag{1}
\]

Let \(\psi = T \varphi \), for a solution \(\varphi \) of \(\Box_g \varphi = 0 \) with compactly supported initial data to be chosen later. Using the methods of the logarithmic decay result, (1) implies that for any \(\epsilon > 0 \), any \(R, T, \tau_0 \gg 1 \) and any \(0 < \delta < 1 \), there exists a \(\tau^* \geq \tau_0 \) such that:

\[
\hat{\{ \tau^* - T \leq t \leq \tau^* + T \}} \cap \{ r \leq R \} \setminus E_\delta (|\nabla \psi|^2 + |\psi|^2) < \epsilon. \tag{2}
\]

(1), (2) \Rightarrow There exists a function \(\tilde{\psi} \in H^1_{\text{loc}}(M) \) such that:

\(\psi(t + \tau_n, x) \to \tilde{\psi}(t, x) \) and \(T \psi(t + \tau_n, x) \to T \tilde{\psi}(t, x) \) weakly in \(H^1_{\text{loc}}(M) \) and strongly in \(L^2_{\text{loc}}(M) \), for a sequence \(\tau_n \to +\infty \).

\(\tilde{\psi} \equiv 0 \) on \(M \setminus E \), \(\Box_g \tilde{\psi} = 0 \)

Unique continuation condition = \Rightarrow \(\tilde{\psi} \equiv 0 \) in \(U \).
Sketch of the proof

The proof proceeds by contradiction, assuming that all smooth solutions \(\varphi \) to \(\square_g \varphi = 0 \) satisfy

\[
\limsup_{\tau \to +\infty} \int_{\{t = \tau\}} |\nabla \varphi|^2 < +\infty. \tag{1}
\]

Let \(\psi = T\varphi \), for a solution \(\varphi \) of \(\square_g \varphi = 0 \) with compactly supported initial data to be chosen later.
Sketch of the proof

The proof proceeds by contradiction, assuming that all smooth solutions \(\varphi \) to \(\Box_g \varphi = 0 \) satisfy

\[
\limsup_{\tau \to +\infty} \int_{\{t=\tau\}} |\nabla \varphi|^2 < +\infty. \tag{1}
\]

Let \(\psi = T \varphi \), for a solution \(\varphi \) of \(\Box_g \varphi = 0 \) with compactly supported initial data to be chosen later.

Using the methods of the logarithmic decay result, (1) implies that for any \(\varepsilon > 0 \), any \(R, T, \tau_0 \gg 1 \) and any \(0 < \delta < 1 \), there exists a \(\tau_* \geq \tau_0 \) such that:

\[
\int_{\{\tau_* - T \leq t \leq \tau_* + T\} \cap \{r \leq R\} \setminus E_{\delta}} (|\nabla \psi|^2 + |\psi|^2) < \varepsilon. \tag{2}
\]
Sketch of the proof

The proof proceeds by contradiction, assuming that all smooth solutions ϕ to $\Box_g \phi = 0$ satisfy

$$\limsup_{\tau \to +\infty} \int_{\{t=\tau\}} |\nabla \phi|^2 < +\infty.$$ \hspace{1cm} (1)

Let $\psi = T\phi$, for a solution ϕ of $\Box_g \phi = 0$ with compactly supported initial data to be chosen later.

Using the methods of the logarithmic decay result, (1) implies that for any $\epsilon > 0$, any $R, T, \tau_0 \gg 1$ and any $0 < \delta < 1$, there exists a $\tau_* \geq \tau_0$ such that:

$$\int_{\{\tau_* - T \leq t \leq \tau_* + T\} \cap \{r \leq R\} \setminus E_\delta} (|\nabla \psi|^2 + |\psi|^2) < \epsilon.$$ \hspace{1cm} (2)

(1), (2) \implies There exists a function $\tilde{\psi} \in H^1_{loc}(\mathcal{M})$ such that:

- $\psi(t + \tau_n, x) \rightarrow \tilde{\psi}(t, x)$ and $T\psi(t + \tau_n, x) \rightarrow T\tilde{\psi}(t, x)$ weakly in $H^1_{loc}(\mathcal{M})$ and strongly in $L^2_{loc}(\mathcal{M})$, for a sequence $\tau_n \rightarrow +\infty$.
- $\tilde{\psi} \equiv 0$ on $\mathcal{M} \setminus E$
- $\Box_g \tilde{\psi} = 0$
Sketch of the proof

The proof proceeds by contradiction, assuming that all smooth solutions \(\varphi \) to \(\Box_g \varphi = 0 \) satisfy

\[
\limsup_{\tau \to +\infty} \int_{\{t=\tau\}} |\nabla \varphi|^2 < +\infty. \tag{1}
\]

Let \(\psi = T\varphi \), for a solution \(\varphi \) of \(\Box_g \varphi = 0 \) with compactly supported initial data to be chosen later.

Using the methods of the logarithmic decay result, (1) implies that for any \(\varepsilon > 0 \), any \(R, T, \tau_0 \gg 1 \) and any \(0 < \delta < 1 \), there exists a \(\tau^* \geq \tau_0 \) such that:

\[
\int_{\{\tau^* - T \leq t \leq \tau^* + T\} \cap \{r \leq R\} \setminus \mathcal{E}_\delta} \left(|\nabla \psi|^2 + |\psi|^2 \right) < \varepsilon. \tag{2}
\]

(1), (2) \implies There exists a function \(\tilde{\psi} \in H^1_{loc}(\mathcal{M}) \) such that:

\begin{itemize}
 \item \(\psi(t + \tau_n, x) \to \tilde{\psi}(t, x) \) and \(T\psi(t + \tau_n, x) \to T\tilde{\psi}(t, x) \) weakly in \(H^1_{loc}(\mathcal{M}) \) and strongly in \(L^2_{loc}(\mathcal{M}) \), for a sequence \(\tau_n \to +\infty \).
 \item \(\tilde{\psi} \equiv 0 \) on \(\mathcal{M}\setminus \mathcal{E} \)
 \item \(\Box_g \tilde{\psi} = 0 \)
\end{itemize}

Unique continuation condition \implies \(\tilde{\psi} \equiv 0 \) in \(\mathcal{U} \)
Sketch of the proof

It is possible to choose the initial data for \(\phi \) (and thus for \(\psi = T \phi \)) on \(\{ t = 0 \} \) so that:

\[
(\psi, T \psi) \big|_{t=0} \text{ is supported in } U \cap \{ t = 0 \}
\]

Conservation of the \(T \)-energy flux: For all \(\tau \geq 0 \)

\[
\hat{\{ t = \tau \}} \cap E \quad J_{T \mu}(\psi_n \mu) \leq -1.
\]

Alternative formula for energy:

\[
\hat{\{ t = \tau \}} J_{T \mu}(\psi_n) = \hat{\{ t = \tau \}} \Re \{ T \psi \cdot n \bar{\psi} - \psi \cdot n (T \bar{\psi}) \}.
\]

So:

\[
\hat{\{ t = 0 \}} J_{T \mu}(\tilde{\psi}) n \mu \leq -1.
\]
Sketch of the proof

It is possible to choose the initial data for φ (and thus for $\psi = T\varphi$) on $\{t = 0\}$ so that:

- $(\psi, T\psi)|_{t=0}$ is supported in $U \cap E$
- $\int_{\{t=0\}} J_T^\mu (\psi) n^\mu = -1$
It is possible to choose the initial data for φ (and thus for $\psi = T\varphi$) on $\{t = 0\}$ so that:

- $(\psi, T\psi)|_{t=0}$ is supported in $U \cap \mathcal{E}$
- $\int_{\{t=0\}} J^T_\mu (\psi) n^\mu = -1$

Conservation of the T-energy flux: For all $\tau \geq 0$

$$\int_{\{t=\tau\} \cap \mathcal{E}} J^T_\mu (\psi) n^\mu \leq -1.$$
Sketch of the proof

It is possible to choose the initial data for ϕ (and thus for $\psi = T\phi$) on $\{t = 0\}$ so that:

- $(\psi, T\psi)|_{t=0}$ is supported in $U \cap E$
- $\int_{\{t=0\}} J_\mu^T(\psi)n^\mu = -1$

Conservation of the T-energy flux: For all $\tau \geq 0$

$$\int_{\{t=\tau\} \cap E} J_\mu^T(\psi)n^\mu \leq -1.$$

Alternative formula for energy:

$$\int_{\{t=\tau\}} J_\mu^T(\psi)n^\mu = \int_{\{t=\tau\}} \text{Re}\left\{ T\psi \cdot n\bar{\psi} - \psi \cdot n(T\bar{\psi}) \right\}.$$
Sketch of the proof

It is possible to choose the initial data for φ (and thus for $\psi = T\varphi$) on $\{t = 0\}$ so that:

- $(\psi, T\psi)|_{t=0}$ is supported in $U \cap \mathcal{E}$
- $\int_{\{t=0\}} J^T_\mu (\psi) n^\mu = -1$

Conservation of the T-energy flux: For all $\tau \geq 0$

$$\int_{\{t=\tau\} \cap \mathcal{E}} J^T_\mu (\psi) n^\mu \leq -1.$$

Alternative formula for energy:

$$\int_{\{t=\tau\} \cap \mathcal{E}} J^T_\mu (\psi) n^\mu = \int_{\{t=\tau\}} \text{Re}\left\{ T\psi \cdot n\bar{\psi} - \psi \cdot n(T\bar{\psi}) \right\}.$$

So:

$$\int_{\{t=0\}} J^T_\mu (\tilde{\psi}) n^\mu \leq -1. \quad (3)$$
Sketch of the proof

Indefinite inner product associated to the T-energy:

$$\langle \phi_1, \phi_2 \rangle_T, \tau = \hat{\{t = \tau}\}}^{1,2} \text{Re} \{T \phi_1 \bar{\phi_2} + n \phi_1 T \bar{\phi_2} - g(T, n) \partial_\alpha \phi_1 \partial_\alpha \bar{\phi_2}\}.$$

For all $\tau \geq 0$:

$$\langle \psi, F - \tau \tilde{\psi} \rangle_T, 0 = 0,$$

where $F - \tau \tilde{\psi}(t, x) = \tilde{\psi}(t - \tau, x)$.

Conservation of the inner product:

$$\langle \psi, F - \tau \tilde{\psi} \rangle_T, \tau = 0.$$

Equivalently:

$$\langle F \tau \psi, \tilde{\psi} \rangle_T, 0 = 0.$$

Therefore, for $\tau = \tau_n \to +\infty$:

$$\hat{\{t = 0\}} J T \mu(\tilde{\psi}) n \mu = \langle \tilde{\psi}, \tilde{\psi} \rangle_T, 0 = 0.$$

(4) (3) & (4): Contradiction!
Sketch of the proof

Indefinite inner product associated to the T-energy:

$$\langle \varphi_1, \varphi_2 \rangle_{T, \tau} = \int_{\{t = \tau\}} \frac{1}{2} \text{Re} \left\{ T \varphi_1 n \bar{\varphi}_2 + n \varphi_1 T \bar{\varphi}_2 - g(T, n) \partial^\alpha \varphi_1 \partial_\alpha \bar{\varphi}_2 \right\}.$$
Sketch of the proof

Indefinite inner product associated to the T-energy:

$$\langle \varphi_1, \varphi_2 \rangle_{T, \tau} = \int_{\{t=\tau\}} \frac{1}{2} \text{Re}\left\{ T \varphi_1 \bar{n}\varphi_2 + n\varphi_1 T\bar{\varphi}_2 - g(T, n)\partial^\alpha \varphi_1 \partial_\alpha \bar{\varphi}_2 \right\}. $$

- For all $\tau \geq 0$: $\langle \psi, \mathcal{F}_{-\tau} \tilde{\psi} \rangle_{T, 0} = 0$, where $\mathcal{F}_{-\tau} \tilde{\psi}(t, x) = \tilde{\psi}(t - \tau, x)$. (4)

(3) & (4): Contradiction!
Sketch of the proof

Indefinite inner product associated to the T-energy:

$$\langle \varphi_1, \varphi_2 \rangle_{T, \tau} = \int_{\{t=\tau\}} \frac{1}{2} \text{Re} \left\{ T \varphi_1 \n \overline{\varphi}_2 + n \varphi_1 T \overline{\varphi}_2 - g(T, n) \partial^\alpha \varphi_1 \partial_\alpha \overline{\varphi}_2 \right\}.$$

- For all $\tau \geq 0$: $\left\langle \psi, \mathcal{F}_{-\tau} \tilde{\psi} \right\rangle_{T, 0} = 0$, where $\mathcal{F}_{-\tau} \tilde{\psi}(t, x) = \tilde{\psi}(t - \tau, x)$.

- Conservation of the inner product: $\left\langle \psi, \mathcal{F}_{-\tau} \tilde{\psi} \right\rangle_{T, \tau} = 0$.

Equivalently:

$\left\langle \mathcal{F}_{-\tau} \psi, \mathcal{F}_{-\tau} \tilde{\psi} \right\rangle_{T, 0} = 0.$
Sketch of the proof

Indefinite inner product associated to the T-energy:

$$\langle \varphi_1, \varphi_2 \rangle_{T, \tau} = \int_{\{t=\tau\}} \frac{1}{2} \text{Re}\left\{ T \varphi_1 n \bar{\varphi}_2 + n \varphi_1 \tau \bar{\varphi}_2 - g(T, n) \partial^\alpha \varphi_1 \partial_\alpha \bar{\varphi}_2 \right\}.$$

- For all $\tau \geq 0$: $\left\langle \psi, F_{-\tau} \bar{\psi} \right\rangle_{T,0} = 0$, where $F_{-\tau} \bar{\psi}(t, x) = \bar{\psi}(t - \tau, x)$.

- Conservation of the inner product: $\left\langle \psi, F_{-\tau} \bar{\psi} \right\rangle_{T, \tau} = 0$.

- Equivalently: $\left\langle F_{\tau} \psi, \bar{\psi} \right\rangle_{T,0} = 0$.

(4) & (3): Contradiction!
Indefinite inner product associated to the T-energy:

$$\langle \varphi_1, \varphi_2 \rangle_{T, \tau} = \int_{\{t=\tau\}} \frac{1}{2} \operatorname{Re} \left\{ T \varphi_1 n \bar{\varphi}_2 + n \varphi_1 T \bar{\varphi}_2 - g(T, n) \partial^\alpha \varphi_1 \partial_\alpha \bar{\varphi}_2 \right\}.$$

- For all $\tau \geq 0$: $\langle \psi, \mathcal{F}_{-\tau} \tilde{\psi} \rangle_{T, 0} = 0$, where $\mathcal{F}_{-\tau} \tilde{\psi}(t, x) = \tilde{\psi}(t - \tau, x)$.

- Conservation of the inner product: $\langle \psi, \mathcal{F}_{-\tau} \tilde{\psi} \rangle_{T, \tau} = 0$.

- Equivalently: $\langle \mathcal{F}_{\tau} \psi, \tilde{\psi} \rangle_{T, 0} = 0$.

- Therefore, for $\tau = \tau_n \to +\infty$:

$$\int_{\{t=0\}} J^T_{\bar{\mu}} (\tilde{\psi}) n^\mu = \langle \tilde{\psi}, \tilde{\psi} \rangle_{T, 0} = 0. \quad (4)$$
Sketch of the proof

Indefinite inner product associated to the T-energy:

$$\langle \varphi_1, \varphi_2 \rangle_{T,\tau} = \int_{\{t=\tau\}} \frac{1}{2} \Re \left\{ T \varphi_1 n\bar{\varphi}_2 + n\varphi_1 T\bar{\varphi}_2 - g(T,n) \partial^\alpha \varphi_1 \partial_\alpha \bar{\varphi}_2 \right\}.$$

- For all $\tau \geq 0$: $\langle \psi, \mathcal{F}_{-\tau} \tilde{\psi} \rangle_{T,0} = 0$, where $\mathcal{F}_{-\tau} \tilde{\psi}(t,x) = \tilde{\psi}(t-\tau, x)$.

- Conservation of the inner product: $\langle \psi, \mathcal{F}_{-\tau} \tilde{\psi} \rangle_{T,\tau} = 0$.

- Equivalently: $\langle \mathcal{F}_{\tau} \psi, \tilde{\psi} \rangle_{T,0} = 0$.

- Therefore, for $\tau = \tau_n \to +\infty$:

$$\int_{\{t=0\}} J^T_\mu (\tilde{\psi}) n^\mu = \langle \tilde{\psi}, \tilde{\psi} \rangle_{T,0} = 0. \quad (4)$$

(3) & (4): Contradiction!
Thank you for your attention!