Non-compactness of initial data sets in high dimensions.
Seminar on Mathematical General Relativity
LJLL, Université Paris 6

Bruno Premoselli
Université Libre de Bruxelles

10 Avril 2017
Scalar-field theory in General Relativity

Let \((\mathcal{M}^{n+1}, h), \ n \geq 3\), be a Lorentzian manifold, \(\Psi \in C^\infty(\mathcal{M}^{n+1})\) a scalar-field and \(V \in C^\infty(\mathbb{R})\) a potential.

\((\mathcal{M}^{n+1}, h, \Psi)\) is said to be a space-time if it satisfies the following Einstein equations:

\[
\begin{aligned}
Ric(h)_{ij} - \frac{1}{2} R(h) h_{ij} &= \nabla_i \Psi \nabla_j \Psi - \left(\frac{1}{2} |\nabla \Psi|_h^2 + V(\Psi)\right) h_{ij}, \\
\Box_h \Psi &= \frac{dV}{d\Psi}.
\end{aligned}
\]

(E)

Relevant physical cases:

- Vacuum case with no cosmological constant: \(\Lambda = 0, \ V = 0\).
- Vacuum case with positive cosmological constant: \(\Lambda > 0, V = \Lambda > 0\).
- Klein-Gordon fields: \(V(\Psi) = \frac{1}{2} m^2 \), \(m > 0\).
Let \((\mathcal{M}^{n+1}, h), n \geq 3\), be a Lorentzian manifold, \(\Psi \in C^\infty(\mathcal{M}^{n+1})\) a scalar-field and \(V \in C^\infty(\mathbb{R})\) a potential.

\((\mathcal{M}^{n+1}, h, \Psi)\) is said to be a space-time if it satisfies the following Einstein equations:

\[
\begin{align*}
Ric(h)_{ij} - \frac{1}{2} R(h) h_{ij} &= \nabla_i \Psi \nabla_j \Psi - \left(\frac{1}{2} |\nabla \Psi|^2_h + V(\Psi) \right) h_{ij}, \\
\Box_h \Psi &= \frac{dV}{d\Psi}.
\end{align*}
\]

Relevant physical cases:

- Vacuum case with no cosmological constant: \(\Psi \equiv 0, V \equiv 0\).
- Vacuum case with positive cosmological constant: \(\Psi \equiv 0, V \equiv \Lambda > 0\).
- Klein-Gordon fields: \(V(\Psi) = \frac{1}{2} m \Psi^2, m > 0\).
The Evolution Problem

Assume globally hyperbolic spacetime: $\mathcal{M}^{n+1} = M^n \times \mathbb{R}$ with $(M^n, h|_{M^n})$ Riemannian.
The Evolution Problem

Assume **globally hyperbolic spacetime:** \(M^{n+1} = M^n \times \mathbb{R} \) with \((M^n, h_{\mid M^n}) \) Riemannian.

Notion of initial data sets on \(M^n \):

Theorem (Choquet-Bruhat ’52, Choquet-Bruhat-Geroch ’69)

\((M^n \times \mathbb{R}, h, \Psi)\) solves \((E)\) if and only if \((\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})\) solves *in* \(M^n \) the *constraint system*:

\[
\begin{aligned}
R(\tilde{g}) + tr_{\tilde{g}} \tilde{K}^2 - ||\tilde{K}||_{\tilde{g}}^2 &= \tilde{\pi}^2 + |\tilde{\nabla} \tilde{\psi}|_{\tilde{g}}^2 + 2V(\tilde{\psi}) , \\
\tilde{\nabla}(tr_{\tilde{g}} \tilde{K}) - div_{\tilde{g}} K &= -\tilde{\pi} \tilde{\nabla} \tilde{\psi} ,
\end{aligned}
\]

\((C)\)

In particular: any solution \((\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})\) of \((C)\) evolves into a solution of the Einstein equations. A solution \((\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})\) is therefore called **an initial data set.**
The Evolution Problem

Assume globally hyperbolic spacetime: \(\mathcal{M}^{n+1} = M^n \times \mathbb{R} \) with \((M^n, h|_{M^n}) \) Riemannian.

Notion of initial data sets on \(M^n \):

Theorem (Choquet-Bruhat ’52, Choquet-Bruhat-Geroch ’69)

\((M^n \times \mathbb{R}, h, \Psi)\) solves \((E)\) if and only if \((\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})\) solves in \(M^n\) the constraint system:

\[
\begin{aligned}
R(\tilde{g}) + tr_{\tilde{g}} \tilde{K}^2 - ||\tilde{K}||_{\tilde{g}}^2 &= \tilde{\pi}^2 + |\tilde{\nabla}\tilde{\psi}|_{\tilde{g}}^2 + 2V(\tilde{\psi}) , \\
\tilde{\nabla}(tr_{\tilde{g}} \tilde{K}) - div_{\tilde{g}} K &= -\tilde{\pi} \tilde{\nabla}\tilde{\psi} ,
\end{aligned}
\]

\((C)\)

In particular: any solution \((\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})\) of \((C)\) evolves into a solution of the Einstein equations. A solution \((\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})\) is therefore called an initial data set.

Here we have let:

- \(\tilde{g} = h|_{M^n}\) and \(\tilde{\nabla}\) is the Levi-Civita connection for \(\tilde{g}\) in \(M^n\),
- \(\tilde{K}\): second fundamental form of the embedding \(M^n \subset M^n \times \mathbb{R}\),
- \(\tilde{\psi} = \Psi|_{M^n}\) and \(\tilde{\pi} = (N \cdot \Psi)|_{M^n}\). \(N\) is the future-directed unit normal to \(M^n\).
The Evolution Problem

Assume globally hyperbolic spacetime: $\mathcal{M}^{n+1} = \mathcal{M}^n \times \mathbb{R}$ with $(\mathcal{M}^n, h|_{\mathcal{M}^n})$ Riemannian.

Notion of initial data sets on \mathcal{M}^n:

Theorem (Choquet-Bruhat ’52, Choquet-Bruhat-Geroch ’69)

$(\mathcal{M}^n \times \mathbb{R}, h, \Psi)$ solves (E) if and only if $(\tilde{\mathcal{g}}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ solves in \mathcal{M}^n the constraint system:

\[
\begin{aligned}
R(\tilde{\mathcal{g}}) + tr_{\tilde{\mathcal{g}}} \tilde{K}^2 - ||\tilde{K}||_{\tilde{\mathcal{g}}}^2 &= \tilde{\pi}^2 + |\tilde{\nabla}\tilde{\psi}|_{\tilde{\mathcal{g}}}^2 + 2V(\tilde{\psi}), \\
\tilde{\nabla}(tr_{\tilde{\mathcal{g}}} \tilde{K}) - div_{\tilde{\mathcal{g}}} K &= -\tilde{\pi} \tilde{\nabla}\tilde{\psi},
\end{aligned}
\]

(C)

In particular: any solution $(\tilde{\mathcal{g}}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ of (C) evolves into a solution of the Einstein equations. A solution $(\tilde{\mathcal{g}}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ is therefore called an initial data set.

Here we have let:

- $\tilde{\mathcal{g}} = h|_{\mathcal{M}^n}$ and $\tilde{\nabla}$ is the Levi-Civita connection for $\tilde{\mathcal{g}}$ in \mathcal{M}^n,
- \tilde{K}: second fundamental form of the embedding $\mathcal{M}^n \subset \mathcal{M}^n \times \mathbb{R}$,
- $\tilde{\psi} = \Psi|_{\mathcal{M}^n}$ and $\tilde{\pi} = (N \cdot \Psi)|_{\mathcal{M}^n}$. N is the future-directed unit normal to \mathcal{M}^n.

System (C) has $n(n+1) + 2$ unknowns $(\tilde{\mathcal{g}}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ for $n+1$ equations.
The conformal method (Lichnerowicz, Choquet-Bruhat, York)

Goal: produce solution of the constraint equations:

\[
\begin{align*}
R(\tilde{g}) + \text{tr}_{\tilde{g}} \tilde{K}^2 - ||\tilde{K}||_{\tilde{g}}^2 &= \tilde{\pi}^2 + |\tilde{\nabla}\tilde{\psi}|_{\tilde{g}}^2 + 2V(\tilde{\psi}) , \\
\tilde{\nabla}(\text{tr}_{\tilde{g}} \tilde{K}) - \text{div}_{\tilde{g}} K &= -\tilde{\pi} \tilde{\nabla}\tilde{\psi} .
\end{align*}
\]

Idea: look for solutions depending on \(n + 1 \) parameters to overcome the underdetermination.
The conformal method (Lichnerowicz, Choquet-Bruhat, York)

Goal: produce solution of the constraint equations:

\[
\begin{cases}
R(\tilde{g}) + \text{tr}_{\tilde{g}} \tilde{K}^2 - ||\tilde{K}||^2_{\tilde{g}} = \tilde{\pi}^2 + |\tilde{\nabla}\tilde{\psi}|^2_{\tilde{g}} + 2V(\tilde{\psi}) , \\
\tilde{\nabla}(\text{tr}_{\tilde{g}} \tilde{K}) - \text{div}_{\tilde{g}} K = -\tilde{\pi} \tilde{\nabla}\tilde{\psi} .
\end{cases}
\]

Idea: look for solutions depending on \(n + 1\) parameters to overcome the underdetermination.

Conformal parametrization: look for the unknown initial data set \((\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})\) as:

\[
\left(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi}\right) = \left(u^{\frac{4}{n-2}} g, \frac{T}{n} u^{\frac{4}{n-2}} g + u^{-2} (\sigma + \mathcal{L}_g W), \psi, u^{-\frac{2n}{n-2}} \pi\right),
\]

where \(u \in C^\infty(M), \ u > 0, \ W \in T^*M\) and \(\mathcal{L}_g W\) is the conformal Killing operator.
The conformal method (Lichnerowicz, Choquet-Bruhat, York)

Goal: produce solution of the constraint equations:

\[
\begin{cases}
R(\tilde{g}) + \text{tr}_{\tilde{g}} \tilde{K}^2 - \|\tilde{K}\|_{\tilde{g}}^2 = \tilde{\pi}^2 + |\nabla_{\tilde{g}} \tilde{\psi}|_{\tilde{g}}^2 + 2V(\tilde{\psi}), \\
\nabla(\text{tr}_{\tilde{g}} \tilde{K}) - \text{div}_{\tilde{g}} K = -\tilde{\pi} \nabla_{\tilde{g}} \tilde{\psi}.
\end{cases}
\]

Idea: look for solutions depending on \(n + 1\) parameters to overcome the underdetermination.

Conformal parametrization: look for the unknown initial data set \((\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})\) as:

\[
\left(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi}\right) = \left(u^{n^2}g, \frac{T}{n}u^{n^2}g + u^{-2}(\sigma + \mathcal{L}_{g}W), \psi, u^{-\frac{2n}{n-2}}\pi\right),
\]

where \(u \in C^\infty(M), u > 0, W \in T^*M\) and \(\mathcal{L}_{g}W\) is the conformal Killing operator.

These data depend on \(n + 1\) parameters \((u, W)\) and on given physics data \((\psi, \pi, \tau, \sigma, V)\) where:

- \(V\) is the potential of the scalar-field,
- \(\psi, \pi\) are scalar-field data,
- \(\tau\) is a mean curvature,
- \(\sigma\) is a \((2, 0)\)-symmetric tensor field with \(\text{tr}_{g}\sigma = 0\) and \(\text{div}_{g}\sigma = 0\) ("TT tensor").
The Einstein-Lichnerowicz constraint system

The conformal parametrization solves the original constraint equations if and only if \((u, W)\) solve the Einstein-Lichnerowicz constraint system:

\[
\begin{align*}
\Delta_g u + hu &= fu^2 - 1 + \frac{\pi^2 + |\sigma + \mathcal{L}_g W|^2}{u^2 + 1}, \\
\overrightarrow{\Delta}_g W &= u^2 X + Y.
\end{align*}
\]

(CC)
The Einstein-Lichnerowicz constraint system

The conformal parametrization solves the original constraint equations if and only if (u, W) solve the Einstein-Lichnerowicz constraint system:

\[
\begin{align*}
\triangle_g u + hu &= f u^{2* - 1} + \frac{\pi^2 + |\sigma + \mathcal{L}_g W|_g^2}{u^{2* + 1}}, \\
\nabla_g W &= u^{2*} X + Y.
\end{align*}
\]

(\text{CC})

Here: $2^* = \frac{2n}{n-2}$, (u, W) are smooth, $u > 0$. Also $\triangle_g = -\text{div}_g (\nabla \cdot)$, $\triangle_g = -\text{div}_g (\nabla \cdot)$. $\mathcal{L}_g W$ is the conformal Killing derivative:

\[
\mathcal{L}_g W_{ij} = W_{i,j} + W_{j,i} - \frac{2}{n} \text{div}_g W \cdot g_{ij},
\]

and $\nabla_g W = -\text{div}_g (\mathcal{L}_g W)$ is the Lamé operator.
The Einstein-Lichnerowicz constraint system

The conformal parametrization solves the original constraint equations if and only if \((u, W)\) solve the Einstein-Lichnerowicz constraint system:

\[
\begin{aligned}
\triangle_g u + hu &= fu^{2^*-1} + \frac{\pi^2 + |\sigma + \mathcal{L}_g W|^2}{u^{2^*+1}}, \\
\vec{\Delta}_g W &= u^{2^*} X + Y.
\end{aligned}
\]

(CC)

Here: \(2^* = \frac{2n}{n-2}\), \((u, W)\) are smooth, \(u > 0\). Also \(\triangle_g = -\text{div}_g (\nabla \cdot)\), \(\triangle_g = -\text{div}_g (\nabla \cdot)\). \(\mathcal{L}_g W\) is the conformal Killing derivative:

\[
\mathcal{L}_g W_{ij} = W_{i,j} + W_{j,i} - \frac{2}{n} \text{div}_g W \cdot g_{ij},
\]

and \(\vec{\Delta}_g W = -\text{div}_g (\mathcal{L}_g W)\) is the Lamé operator.

In the physical case, the coefficients \((h, f, \pi, \sigma, X, Y)\) depend on the choice of the given physics data \((\psi, \pi, \tau, \sigma, V)\) of the conformal method.

Our goal: understand the blow-up behavior of the solutions of (CC).
Setting of our problem:

In the following: for us, \(M \) will always be compact without boundary. The coefficients \((h, f, \pi, X, Y, \sigma)\) will satisfy the assumptions of the focusing case:

\[
f > 0, \quad \Delta_g + h \quad \text{coercive}, \quad \text{and} \quad \pi \neq 0.
\]
Setting of our problem:

In the following: for us, M will alway be compact without boundary. The coefficients $(h, f, \pi, X, Y, \sigma)$ will satisfy the assumptions of the focusing case:

$$f > 0, \quad \Delta_g + h \text{ coercive}, \quad \text{and} \quad \pi \neq 0.$$

In the physical case, the coefficients are related to the physics data by:

$$h = \frac{n-2}{4(n-1)} \left(S_g - |\nabla \psi|_g^2 \right),$$

$$f = 2V(\psi) - \frac{n-1}{n} \tau^2,$$

$$X = -\frac{n-1}{n} \nabla \tau, \quad Y = -\pi \nabla \psi.$$
Setting of our problem:

In the following: for us, M will always be compact without boundary. The coefficients $(h, f, \pi, X, Y, \sigma)$ will satisfy the assumptions of the focusing case:

$$f > 0, \quad \triangle_g + h \quad \text{coercive, and} \quad \pi \neq 0.$$

In the physical case, the coefficients are related to the physics data by:

$$h = \frac{n-2}{4(n-1)} (S_g - |\nabla \psi|^2_g),$$
$$f = 2V(\psi) - \frac{n-1}{n} \tau^2,$$
$$X = -\frac{n-1}{n} \nabla \tau, \quad Y = -\pi \nabla \psi.$$

Solutions of (CC) exist under mild conditions on the coefficients (P., Gicquaud-Nguyen).
Setting of our problem:

In the following: for us, M will always be compact without boundary. The coefficients $(h, f, \pi, X, Y, \sigma)$ will satisfy the assumptions of the focusing case:

$$f > 0, \quad \Delta_g + h \text{ coercive, and } \pi \neq 0.$$

In the physical case, the coefficients are related to the physics data by:

$$h = \frac{n-2}{4(n-1)} (S_g - |\nabla \psi|^2_g),$$

$$f = 2V(\psi) - \frac{n-1}{n} \tau^2,$$

$$X = -\frac{n-1}{n} \nabla \tau, \quad Y = -\pi \nabla \psi.$$

Solutions of (CC) exist under mild conditions on the coefficients (P., Gicquaud-Nguyen). In the following we will investigate the system for general focusing coefficients $(h, f, \pi, X, Y, \sigma)$, not only the physical ones.
Criticality of the system and defects of compactness

\[
\begin{align*}
\Delta_g u + hu &= fu^{2^*-1} + \frac{\pi^2 + |\sigma + \mathcal{L}_g W|_g^2}{u^{2^*+1}}, \\
\overrightarrow{\Delta}_g W &= u^{2^*} X + Y.
\end{align*}
\]

The critical nonlinearity u^{2^*-1}, with the “mean” focusing sign $f > 0$, implies that concentration phenomena (or blow-up) are likely to occur.
Criticality of the system and defects of compactness

\[
\begin{aligned}
\triangle_g u + hu &= fu^{2^*-1} + \pi^2 + |\sigma + \mathcal{L}_g W|^2_g u^{2^*+1}, \\
\mathbf{\nabla}_g W &= u^{2^*} X + Y.
\end{aligned}
\]

The critical nonlinearity \(u^{2^*-1} \), with the “mean” focusing sign \(f > 0 \), implies that concentration phenomena (or blow-up) are likely to occur.

Model example: standard bubbles. For \(\lambda > 0 \) and \(x_0 \in \mathbb{R}^n, n \geq 3 \):

\[
B_{\lambda,x_0}(x) = \left(\frac{\lambda}{\lambda^2 + \frac{|x-x_0|^2}{n(n-2)}} \right)^{\frac{n-2}{2}}, \quad \nabla_\zeta B_{\lambda,x_0} = B_{\lambda,x_0}^{2^*-1} \quad \text{in } \mathbb{R}^n, \quad \|B_{\lambda,x_0}\|_{L^{2^*}} = K_n.
\]
Criticality of the system and defects of compactness

\[
\begin{cases}
\Delta_g u + hu = fu^{2^* - 1} + \frac{\pi^2 + |\sigma + L_g W|^2}{u^{2^* + 1}}, \\
\nabla_g W = u^{2^*} X + Y.
\end{cases}
\]

The critical nonlinearity \(u^{2^* - 1} \), with the “mean” focusing sign \(f > 0 \), implies that concentration phenomena (or blow-up) are likely to occur.

Model example: standard bubbles. For \(\lambda > 0 \) and \(x_0 \in \mathbb{R}^n, n \geq 3 \):

\[
B_{\lambda, x_0}(x) = \left(\frac{\lambda}{\lambda^2 + \frac{|x - x_0|^2}{n(n-2)}} \right)^{\frac{n-2}{2}}, \quad \nabla \xi B_{\lambda, x_0} = B_{\lambda, x_0}^{2^* - 1} \quad \text{in } \mathbb{R}^n, \quad \|B_{\lambda, x_0}\|_{L^{2^*}} = K_n.
\]

Similar explosive phenomena in \(C^0(M) \) are obtained for critical nonlinear elliptic equations or systems (Druet-Hebey ’04, Robert-Vétois ’14, Pistoia-Vaira ’15, Vétois-Thizy ’16...).

Perturbations of the coefficients increase the chance of appearance of defects of compactness.

Example: the Yamabe equation (Brendle ’08, Esposito-Pistoia-Vétois ’14).
Criticality of the system and defects of compactness

\begin{align*}
\left\{ \begin{array}{l}
\Delta_g u + hu &= fu^{2*-1} + \frac{\pi^2 + |\sigma + \mathcal{L}_g W|^2}{u^{2*+1}}, \\
\nabla \Delta_g W &= u^{2*} X + Y.
\end{array} \right.
\end{align*}

The critical nonlinearity u^{2*-1}, with the “mean” focusing sign $f > 0$, implies that concentration phenomena (or blow-up) are likely to occur.

Model example: standard bubbles. For $\lambda > 0$ and $x_0 \in \mathbb{R}^n$, $n \geq 3$:

\begin{align*}
B_{\lambda,x_0}(x) &= \left(\frac{\lambda}{\lambda^2 + \frac{|x-x_0|^2}{n(n-2)}} \right)^{\frac{n-2}{2}}, \quad \Delta_\xi B_{\lambda,x_0} = B_{\lambda,x_0}^{2*-1} \quad \text{in } \mathbb{R}^n, \quad \|B_{\lambda,x_0}\|_{L^{2*}} = K_n.
\end{align*}

Similar explosive phenomena in $C^0(M)$ are obtained for critical nonlinear elliptic equations or systems (Druet-Hebey ’04, Robert-Vétois ’14, Pistoia-Vaira ’15, Vétois-Thizy ’16...).

Perturbations of the coefficients increase the chance of appearance of defects of compactness.

Example: the Yamabe equation (Brendle ’08, Esposito-Pistoia-Vétois ’14).

Natural Question: when do these blow-up phenomena occur for the EL system?
The notion of Stability for the Einstein-Lichnerowicz constraint system

Definition

Let \((h, f, \pi, X, Y, \sigma) \in C^2(M)\). The Einstein-Lichnerowicz system is said to be **stable** if, for any sequence \((h_k, f_k, \pi_k, X_k, Y_k, \sigma_k)_k\) converging to \((h, f, \pi, X, Y, \sigma)\) in \(C^2(M)\) and for any sequence \((u_k, W_k)_k\) of solutions of:

\[
\begin{cases}
\triangle_g u_k + h_k u_k = f_k u_k^{2^* - 1} + \frac{\pi_k^2 + |\sigma_k + L_g W_k|^2}{u_k^{2^* + 1}}, \\
\nabla_g W_k = u_k^{2^*} X_k + Y_k,
\end{cases}
\]

there exists a solution \((u, W)\) of \((CC)\) such that \((u_k, W_k) \to (u, W)\) in \(C^2(M)\) (up to a subsequence and up to elements in the kernel of \(L_g\)).
The notion of Stability for the Einstein-Lichnerowicz constraint system

Definition

Let $(h, f, \pi, X, Y, \sigma) \in C^2(M)$. The Einstein-Lichnerowicz system is said to be **stable** if, for any sequence $(h_k, f_k, \pi_k, X_k, Y_k, \sigma_k)_k$ converging to $(h, f, \pi, X, Y, \sigma)$ in $C^2(M)$ and for any sequence $(u_k, W_k)_k$ of solutions of:

\[
\begin{aligned}
\triangle_g u_k + h_k u_k &= f_k u_k^{2^* - 1} + \frac{\pi_k^2 + |\sigma_k + \mathcal{L}_g W_k|^2_g}{u_k^{2^* + 1}}, \\
\nabla_g W_k &= u_k^{2^*} X_k + Y_k,
\end{aligned}
\]

there exists a solution (u, W) of (CC) such that $(u_k, W_k) \rightarrow (u, W)$ in $C^2(M)$ (up to a subsequence and up to elements in the kernel of \mathcal{L}_g).

The system will be said to be **unstable**... if it is not stable. **(Non)-Compactness** is defined similarly for **constant perturbations** of the coefficients.
The notion of Stability for the Einstein-Lichnerowicz constraint system

Definition

Let \((h, f, \pi, X, Y, \sigma) \in C^2(M)\). The Einstein-Lichnerowicz system is said to be **stable** if, for any sequence \((h_k, f_k, \pi_k, X_k, Y_k, \sigma_k)_k\) converging to \((h, f, \pi, X, Y, \sigma)\) in \(C^2(M)\) and for any sequence \((u_k, W_k)_k\) of solutions of:

\[
\begin{align*}
\triangle_g u_k + h_k u_k &= f_k u_k^{2* - 1} + \frac{\pi_k^2 + |\sigma_k + \mathcal{L}_g W_k|^2}{u_k^{2* + 1}}, \\
\nabla_g W_k &= u_k^{2*} X_k + Y_k,
\end{align*}
\]

there exists a solution \((u, W)\) of \((CC)\) such that \((u_k, W_k) \to (u, W)\) in \(C^2(M)\) (up to a subsequence and up to elements in the kernel of \(\mathcal{L}_g\)).

The system will be said to be **unstable**... if it is not stable. (Non)-Compactness is defined similarly for constant perturbations of the coefficients.

The stability of an equation/system yields structural informations. Instability is a failure of uniform (in the choice of the coefficients) a priori bounds for solutions.
Stability results

Stability holds (on a locally conformally flat manifold) under the following conditions:

\[\text{If} \quad n \geq 5 \quad (\text{Druet-P. '14, } n = 3, \text{ P. '15}) \]

\[\text{If} \quad n \leq a \quad \text{and} \quad \mathcal{r} \quad \text{and} \quad X \quad \text{have no common zero in} \quad M. \quad \text{Or, if they do, provided at these zeroes there holds:} \]

\[h < n^2 \quad S_g \left(n^2 \right) \left(n^4 \right) / 8 \quad (n-1)^4 \quad g \quad f \quad f. \quad (0.1) \]

(P. '15)

It is a second-order compatibility condition between the geometric and physics data.

For the physical case of the Einstein-scalar field setting, these conditions ensure that stability holds when the scalar-field \(\mathcal{r} \) and the mean curvature \(\mathcal{r} \) have no common critical point in \(M \).

What about the sharpness of these conditions in high dimensions: can blow-up phenomena happen in high dimensions?
Stability results

Stability holds (on a locally conformally flat manifold) under the following conditions:

- If $3 \leq n \leq 5$ (Druet-P. '14, $n = 3$, P. '15)
- If $n \geq 6$ and ∇f and X have no common zero in M. Or, if they do, provided at these zeroes there holds:

$$h < \frac{n - 2}{4(n - 1)} S_g - \frac{(n - 2)(n - 4)}{8(n - 1)} \frac{\Delta_g f}{f}.$$ \hspace{1cm} (0.1)

(P. '15)

It is a second-order compatibility condition between the geometric and physics data.
Stability results

Stability holds (on a locally conformally flat manifold) under the following conditions:

- If $3 \leq n \leq 5$ (Druet-P. '14, $n = 3$, P. '15)
- If $n \geq 6$ and ∇f and X have no common zero in M. Or, if they do, provided at these zeroes there holds:

$$h < \frac{n-2}{4(n-1)} S_g - \frac{(n-2)(n-4)}{8(n-1)} \frac{\Delta_g f}{f}.$$ \hfill (0.1)

(P. '15)

It is a second-order compatibility condition between the geometric and physics data. For the physical case of the Einstein-scalar field setting, these conditions ensure that stability holds when the scalar-field ψ and the mean curvature τ have no common critical point in M.

What about the sharpness of these conditions in high dimensions: can blow-up phenomena happen in high dimensions?
Stability results

Stability holds (on a locally conformally flat manifold) under the following conditions:

- If $3 \leq n \leq 5$ (Druet-P. '14, $n = 3$, P. '15)
- If $n \geq 6$ and ∇f and X have no common zero in M. Or, if they do, provided at these zeroes there holds:

$$h < \frac{n - 2}{4(n - 1)} S_g - \frac{(n - 2)(n - 4)}{8(n - 1)} \frac{\triangle g f}{f}. \quad (0.1)$$

(P. '15)

It is a second-order compatibility condition between the geometric and physics data. For the physical case of the Einstein-scalar field setting, these conditions ensure that stability holds when the scalar-field ψ and the mean curvature τ have no common critical point in M.

What about the sharpness of these conditions in high dimensions: can blow-up phenomena happen in high dimensions?
Main result: instability examples in high dimensions

Theorem (Non-compactness in high dimensions $n \geq 6$, P., ‘16)

Let (M, g) be a closed Riemannian manifold of dimension $n \geq 6$, such that ∇_g has no kernel. There exist coefficients $(h, f, \pi, \sigma, X, Y)$ of class C^2, satisfying the assumptions of the focusing case and $X \neq 0$ such that the Einstein-Lichnerowicz system:

$$
\begin{align*}
\triangle_g u + hu &= fu^{2* - 1} + \frac{|\mathcal{L}_g W + \sigma|^2 + \pi^2}{u^{2*+1}} \\
\nabla_g W &= u^{2*} X + Y
\end{align*}
$$

possesses a blowing-up sequence of solutions $(u_k, W_k)_k$, that is: $\|u_k\|_{L^\infty(M)} \to +\infty$ and $\|\mathcal{L}_g W_k\|_{L^\infty(M)} \to +\infty$ as $k \to +\infty$. Here the u_k are positive, have one concentration point and have a non-zero limit profile.
Main result: instability examples in high dimensions

Theorem (Non-compactness in high dimensions $n \geq 6$, P., ‘16)

Let (M, g) be a closed Riemannian manifold of dimension $n \geq 6$, such that ∇_g has no kernel. There exist coefficients $(h, f, \pi, \sigma, X, Y)$ of class C^2, satisfying the assumptions of the focusing case and $X \neq 0$ such that the Einstein-Lichnerowicz system:

\[
\begin{cases}
\triangle_g u + hu = fu^{2^* - 1} + \frac{|L_g W + \sigma|^2 + \pi^2}{u^{2^* + 1}} \\
\nabla_g W = u^{2^*} X + Y
\end{cases}
\]

possesses a blowing-up sequence of solutions $(u_k, W_k)_k$, that is: $\|u_k\|_{L^\infty(M)} \to +\infty$ and $\|L_g W_k\|_{L^\infty(M)} \to +\infty$ as $k \to +\infty$. Here the u_k are positive, have one concentration point and have a non-zero limit profile.

In particular: these coefficients $(h, f, \pi, \sigma, X, Y)$ satisfy

\[
h \geq \frac{n - 2}{4(n - 1)} S_g - \frac{(n - 2)(n - 4)}{8(n - 1)} \frac{\triangle_g f}{f} \text{ somewhere.}
\]
Main result: instability examples in high dimensions

Theorem (Non-compactness in high dimensions $n \geq 6$, P., ‘16)

Let (M, g) be a closed Riemannian manifold of dimension $n \geq 6$, such that $\hat{\Delta}_g$ has no kernel. There exist coefficients $(h, f, \pi, \sigma, X, Y)$ of class C^2, satisfying the assumptions of the focusing case and $X \neq 0$ such that the Einstein-Lichnerowicz system:

$$\begin{cases}
\Delta_g u + hu = fu^{2^*-1} + \frac{|L_g W + \sigma|^2_g + \pi^2}{u^{2^*+1}} \\
\hat{\Delta}_g W = u^{2^*} X + Y
\end{cases} \tag{0.2}$$

possesses a blowing-up sequence of solutions $(u_k, W_k)_k$, that is: $\|u_k\|_{L^\infty(M)} \to +\infty$ and $\|L_g W_k\|_{L^\infty(M)} \to +\infty$ as $k \to +\infty$. Here the u_k are positive, have one concentration point and have a non-zero limit profile.

In particular: these coefficients $(h, f, \pi, \sigma, X, Y)$ satisfy

$$h \geq \frac{n-2}{4(n-1)} S_g - \frac{(n-2)(n-4)}{8(n-1)} \frac{\Delta_g f}{f} \text{ somewhere.}$$

Surprising consequence: the Einstein-Lichnerowicz system has an infinite number of (blowing-up) solutions in high dimensions!
Two dual approaches in the blow-up analysis of critical elliptic equations

1) The *a priori* approach. It is the one used to prove stability results.

Answers the following question: given an (arbitrary) blowing-up sequence of solutions of EL, what can I say about it? It gives informations about: the pointwise blow-up behavior of sequences of solutions, the localisation of concentration points, the mutual interactions between different defects of compactness,...
Two dual approaches in the blow-up analysis of critical elliptic equations

1) The \textit{a priori} approach. It is the one used to prove stability results.

Answers the following question: given an (arbitrary) blowing-up sequence of solutions of EL, what can I say about it? It gives informations about: the \textit{pointwise} blow-up behavior of sequences of solutions, the localisation of concentration points, the mutual interactions between different defects of compactness,...

In P., '15 it is for instance proven that any blowing-up sequence (u_k, W_k) of the E-L system satisfies:

$$u_k = B_k + o(B_k) \text{ in } C^0$$

in the neighbourhood of a concentration point, where B_k is a given bubbling profile modeled on the standard bubble. And, \textit{as a consequence}, that at a concentration point x_0 there holds:

$$\nabla f(x_0) = X(x_0) = 0.$$
Two dual approaches in the blow-up analysis of critical elliptic equations

1) The *a priori* approach. It is the one used to prove stability results.

Answers the following question: given an (arbitrary) blowing-up sequence of solutions of EL, what can I say about it? It gives informations about: the pointwise blow-up behavior of sequences of solutions, the localisation of concentration points, the mutual interactions between different defects of compactness,...

In P., '15 it is for instance proven that any blowing-up sequence \((u_k, W_k)\) of the E-L system satisfies:

\[
u_k = B_k + o(B_k) \text{ in } C^0
\]

in the neighbourhood of a concentration point, where \(B_k\) is a given bubbling profile modeled on the standard bubble. And, as a consequence, that at a concentration point \(x_0\) there holds:

\[
\nabla f(x_0) = X(x_0) = 0.
\]

Approach developed by: Li, Zhu, Druet, Schoen, Marques, Zhang, Khuri, Hebey, Robert.
Two dual approaches in the blow-up analysis of critical elliptic equations II

2) The Lyapounov-Schmidt approach, or H^1-constructive approach: used to construct blowing-up sequences of solutions under suitable assumptions on the coefficients.

Idea: look for solutions as:

$$u_{t,\xi,k} = B_{t,\xi,k} + u_0 + \varphi_{t,\xi,k},$$

$u_0 > 0$ weak limit, $B_{t,\xi,k}$ is a bubbling profile and $\varphi_{t,\xi,k}$ is small in $H^1(M)$.
Two dual approaches in the blow-up analysis of critical elliptic equations II

2) The Lyapounov-Schmidt approach, or H^1-constructive approach: used to construct blowing-up sequences of solutions under suitable assumptions on the coefficients.

Idea: look for solutions as:

$$u_{t,\xi,k} = B_{t,\xi,k} + u_0 + \varphi_{t,\xi,k},$$

$u_0 > 0$ weak limit, $B_{t,\xi,k}$ is a bubbling profile and $\varphi_{t,\xi,k}$ is small in $H^1(M)$. The solution depends on $(n+1)$ parameters to be chosen. Reduces the problem to finding critical points of an explicit function of (t, ξ).
Two dual approaches in the blow-up analysis of critical elliptic equations II

2) The Lyapounov-Schmidt approach, or H^1-constructive approach: used to construct blowing-up sequences of solutions under suitable assumptions on the coefficients.

Idea: look for solutions as:

$$u_{t,\xi,k} = B_{t,\xi,k} + u_0 + \varphi_{t,\xi,k},$$

$u_0 > 0$ weak limit, $B_{t,\xi,k}$ is a bubbling profile and $\varphi_{t,\xi,k}$ is small in $H^1(M)$. The solution depends on $(n + 1)$ parameters to be chosen. Reduces the problem to finding critical points of an explicit function of (t, ξ).

Example: to solve $\triangle_g u + hu = u^{2^*-1}$, find $u_{t,\xi,k}$ critical point of the energy. Reduces to find (t, ξ) critical point of:

$$(t, \xi) \mapsto \frac{1}{2} \int_M |\nabla B_{t,\xi,k}|^2 + hB_{t,\xi,k}^2 \, dv_g - \frac{1}{2^*} \int_M B_{t,\xi,k}^{2^*} \, dv_g$$
Two dual approaches in the blow-up analysis of critical elliptic equations II

2) The Lyapounov-Schmidt approach, or H^1-constructive approach: used to construct blowing-up sequences of solutions under suitable assumptions on the coefficients.

Idea: look for solutions as:

$$u_{t,\xi,k} = B_{t,\xi,k} + u_0 + \varphi_{t,\xi,k},$$

$u_0 > 0$ weak limit, $B_{t,\xi,k}$ is a bubbling profile and $\varphi_{t,\xi,k}$ is small in $H^1(M)$. The solution depends on $(n+1)$ parameters to be chosen. Reduces the problem to finding critical points of an explicit function of (t, ξ).

Example: to solve $\triangle_g u + hu = u^{2^* - 1}$, find $u_{t,\xi,k}$ critical point of the energy. Reduces to find (t, ξ) critical point of:

$$(t, \xi) \mapsto \frac{1}{2} \int_M |\nabla B_{t,\xi,k}|^2 + hB_{t,\xi,k}^2 dv_g - \frac{1}{2^*} \int_M B_{t,\xi,k}^{2^*} dv_g$$

The method implicitly relies on the informations provided by the a priori techniques.
2) The Lyapounov-Schmidt approach, or H^1-constructive approach: used to construct blowing-up sequences of solutions under suitable assumptions on the coefficients.

Idea: look for solutions as:

$$u_{t,\xi,k} = B_{t,\xi,k} + u_0 + \varphi_{t,\xi,k},$$

$u_0 > 0$ weak limit, $B_{t,\xi,k}$ is a **bubbling profile** and $\varphi_{t,\xi,k}$ is small in $H^1(M)$. The solution depends on $(n + 1)$ parameters to be chosen. Reduces the problem to finding critical points of an **explicit** function of (t, ξ).

Example: to solve $\triangle_g u + hu = u^{2^* - 1}$, find $u_{t,\xi,k}$ critical point of the **energy**. Reduces to find (t, ξ) critical point of:

$$(t, \xi) \mapsto \frac{1}{2} \int_M |\nabla B_{t,\xi,k}|^2 + hB_{t,\xi,k}^2 dv_g - \frac{1}{2^*} \int_M B_{t,\xi,k}^{2^*} dv_g$$

The method **implicitly** relies on the informations provided by the a priori techniques.

Developed by Wei, Rey, Del Pino, Pacard (over the last 15 years)
Proof: A constructive approach via a glueing method

We hope to find blowing-up solutions of the Einstein-Lichnerowicz system:

\[
\begin{align*}
\Delta_g u + hu &= fu^{2* - 1} + \frac{\pi^2 + |\sigma + \mathcal{L}_g W|^2}{u^{2* + 1}}, \\
\nabla_g W &= u^{2*}X + Y
\end{align*}
\]

having the following form:

\[u_{t,\xi,k} = B_{t,\xi,k} + u_0 + \varphi_{t,\xi,k}.\]

Here: \(u_0 > 0\) is a weak limit, \(B_{t,\xi,k}\) is a standard bubble and \(\varphi_{t,\xi,k}\) is small.
Proof: A constructive approach via a glueing method

We hope to find blowing-up solutions of the Einstein-Lichnerowicz system:

\[
\begin{aligned}
\Delta_g u + hu &= fu^{2^* - 1} + \frac{\pi^2 + |\sigma + L_g W|^2}{u^{2^* + 1}}, \\
\vec{\Delta}_g W &= u^{2^*} X + Y
\end{aligned}
\]

having the following form:

\[u_{t, \xi, k} = B_{t, \xi, k} + u_0 + \varphi_{t, \xi, k}.\]

Here: \(u_0 > 0\) is a weak limit, \(B_{t, \xi, k}\) is a standard bubble and \(\varphi_{t, \xi, k}\) is small.

Problem: the usual constructive method in \(H^1(M)\) does not apply here: \(\varphi_{t, \xi, k}\) cannot be chosen small in \(H^1(M)\)!
Proof: A constructive approach via a glueing method

We hope to find blowing-up solutions of the Einstein-Lichnerowicz system:

\[
\begin{aligned}
\triangle_g u + h u &= f u^{2^* - 1} + \pi^2 + \frac{|\sigma + \mathcal{L}_g W|^2}{u^{2^* + 1}}, \\
\nabla_g \mathcal{W} &= u^{2^*} X + Y
\end{aligned}
\]

having the following form:

\[u_{t,\xi,k} = B_{t,\xi,k} + u_0 + \varphi_{t,\xi,k}. \]

Here: \(u_0 > 0 \) is a weak limit, \(B_{t,\xi,k} \) is a standard bubble and \(\varphi_{t,\xi,k} \) is small.

Problem: the usual constructive method in \(H^1(M) \) does not apply here: \(\varphi_{t,\xi,k} \) cannot be chosen small in \(H^1(M) \)!

The system is strongly coupled (\(X \not\equiv 0 \)) and the vector equation is supercritical in the natural energy space \(H^1(M) \): the system is non-variational and ill-posed in \(H^1(M) \). The system therefore exhibits a double (super-)criticality that cannot be handled with standard constructive energy methods.
Solution: a C^0 constructive approach that relies on the a priori analysis

For us today: constructive method in strong spaces by combining a priori analysis techniques with the standard H^1 reduction method to perform the ping-pong method.
Solution: a C^0 constructive approach that relies on the a priori analysis

For us today: constructive method *in strong spaces* by combining a priori analysis techniques with the standard H^1 reduction method to perform the ping-pong method.

Look again for u_k under the form:

$$u_{t, \xi, k} = B_{t, \xi, k} + u_0 + \varphi_{t, \xi, k},$$
Solution: a C^0 constructive approach that relies on the a priori analysis

For us today: constructive method in strong spaces by combining a priori analysis techniques with the standard H^1 reduction method to perform the ping-pong method.

Look again for u_k under the form:

$$u_{t,\xi,k} = B_{t,\xi,k} + u_0 + \varphi_{t,\xi,k},$$

with a remainder small in a $C^0(M)$ sense, with explicit pointwise bounds depending on the ansatz of the solution:

$$|\varphi_{t,\xi,k}| \leq \varepsilon_k (B_{t,\xi,k} + u_0), \quad (0.3)$$

where $\varepsilon_k \to 0$ and is independent of t and ξ.
Solution: a C^0 constructive approach that relies on the a priori analysis

For us today: constructive method in strong spaces by combining a priori analysis techniques with the standard H^1 reduction method to perform the ping-pong method.

Look again for u_k under the form:

$$u_{t,\xi,k} = B_{t,\xi,k} + u_0 + \varphi_{t,\xi,k},$$

with a remainder small in a $C^0(M)$ sense, with explicit pointwise bounds depending on the ansatz of the solution:

$$|\varphi_{t,\xi,k}| \leq \varepsilon_k (B_{t,\xi,k} + u_0), \quad (0.3)$$

where $\varepsilon_k \to 0$ and is independent of t and ξ.

Our solution depends on $(n+1)$ parameters (t, ξ) – just like the standard bubbling profiles.

Goal: find, for every k, a value $(t_k, \xi_k)_k$ of the parameters and a suitable remainder $\varphi_{t_k,\xi_k,k}$ (small in $C^0(M)$) for which $u_{t_k,\xi_k,k}$ is indeed a solution!
Sketch of the proof I

The proof is a fixed-point ("ping-pong") method in $1 + 3$ main steps:

1. Choose the following zeroth-order approximation:

2. Choose s satisfying
3. By the choice of s and X, we now have pointwise estimates on this W_k that blows-up:
4. Problem: it blows up too fast to plug it into the scalar equation and perform a usual ping-pong method!
Sketch of the proof

The proof is a fixed-point ("ping-pong") method in 1 + 3 main steps:

Step 0: Choose the following zeroth-order approximation:

\[
B_{t, \xi, k}(x) = \Lambda_\xi(x) \cdot \chi \left(\frac{d_{g_\xi}(\xi, x)}{r_k} \right) \left((t \mu_k)^{\frac{n-2}{2}} \right) \frac{\left((t \mu_k)^2 + \frac{f(\xi)}{n(n-2)} d_{g_\xi}(\xi, x)^2 \right)^{\frac{n-2}{2}}}{\text{conformal correction + cutoff}}.
\]

Problem: It blows up too fast to plug it into the scalar equation and perform a usual ping-pong method!
Sketch of the proof I

The proof is a fixed-point ("ping-pong") method in $1 + 3$ main steps:

Step 0: Choose the following zeroth-order approximation:

$$B_{t,\xi,k}(x) = \Lambda_\xi(x) \cdot \chi \left(\frac{d_{g_\xi}(\xi, x)}{r_k} \right) \left((t\mu_k)^{n-2} \cdot \left((t\mu_k)^2 + \frac{f(\xi)}{n(n-2)} d_{g_\xi}(\xi, x)^2 \right)^{\frac{n-2}{2}} \right)$$

- **conformal correction + cutoff**
- **standard bubble**

Choose φ satisfying $|\varphi| \leq \varepsilon_k (B_{t,\xi,k} + u_0)$ and consider the only solution of:

$$\nabla_g W_{t,\xi,k} = (B_{t,\xi,k} + u_0 + \varphi)^{2^*} X + Y.$$
Sketch of the proof I

The proof is a fixed-point ("ping-pong") method in $1 + 3$ main steps:

Step 0: Choose the following zeroth-order approximation:

$$B_{t,\xi,k}(x) = \Lambda_\xi(x) \cdot \chi \left(\frac{d_{g_\xi}(\xi, x)}{r_k} \right) \left(\frac{(t\mu_k)^{n-2}}{\left((t\mu_k)^2 + \frac{f(\xi)}{n(n-2)} d_{g_\xi}(\xi, x)^2 \right)^{n-2}} \right),$$

conformal correction + cutoff

Choose φ satisfying $|\varphi| \leq \varepsilon_k (B_{t,\xi,k} + u_0)$ and consider the only solution of:

$$\nabla g W_{t,\xi,k} = (B_{t,\xi,k} + u_0 + \varphi)^{2^*} X + Y.$$

By the choice of φ and X, we now have pointwise estimates on this W_k that blows-up:

$$|\mathcal{L}_g W_{t,\xi,k}| \sim \frac{\frac{n-1}{2}}{\mu_k^{\frac{1}{2}}} \left(\mu_k^2 + d_{g_\xi}(\xi, x)^2 \right)^{\frac{n-1}{2}} \text{ close to } \xi.$$
Sketch of the proof

The proof is a fixed-point ("ping-pong") method in $1 + 3$ main steps:

Step 0: Choose the following zeroth-order approximation:

$$B_{t, \xi, k}(x) = \Lambda_{\xi}(x) \cdot \chi \left(\frac{d_{g_{\xi}}(\xi, x)}{r_k} \right) \underbrace{\frac{(t\mu_k)^{n-2}}{\left((t\mu_k)^2 + \frac{f(\xi)}{n(n-2)}d_{g_{\xi}}(\xi, x)^2\right)^{n-2}}}_{\text{conformal correction + cutoff}} \underbrace{\left(\frac{\mu_k}{\left(\mu_k^2 + d_{g_{\xi}}(\xi, x)^2\right)^{n-2}}\right)}_{\text{standard bubble}},$$

Choose φ satisfying $|\varphi| \leq \varepsilon_k (B_{t, \xi, k} + u_0)$ and consider the only solution of:

$$\nabla_g W_{t, \xi, k} = (B_{t, \xi, k} + u_0 + \varphi)^{2*} X + Y.$$

By the choice of φ and X, we now have pointwise estimates on this W_k that blows-up:

$$|\mathcal{L}_g W_{t, \xi, k}| \sim \frac{\mu_k^{n-1}}{\left(\mu_k^2 + d_{g_{\xi}}(\xi, x)^2\right)^{n-2}} \text{ close to } \xi.$$

Problem: it blows up too fast to plug it into the scalar equation and perform a usual ping-pong method!
Sketch of the proof II: Semi-decoupling

Step 1: Construct a solution of:

$$\nabla_g u + hu = fu^{2^* - 1} + \frac{|\mathcal{L}_g W_0 + \sigma|_g^2 + \pi^2}{u^{2^* + 1}} + \left(\frac{|\mathcal{L}_g W_{t, \xi, k} + \sigma|_g^2 - |\mathcal{L}_g W_0 + \sigma|_g^2}{(B_{t, \xi, k} + u_0 + \varphi)^{2^* + 1}} \right)$$

$$+ \sum_{j=0}^{n} \chi_j^k(t, \xi, \varphi) (\nabla_g + h) Z_{j,k}.$$

Done via a nonlinear fixed-point method in H^1 in the orthogonal of the kernel of the linearized equation at $B_{t, \xi, k}$ (spanned by the $Z_{j,k}$). Here $\mathcal{L}_g W_{t, \xi, k}$ is a coefficient.
Sketch of the proof II: Semi-decoupling

Step 1: Construct a solution of:

$$
\triangle_g u + hu = fu^{2*-1} + \frac{|\mathcal{L}_g W_0 + \sigma|_g^2 + \pi^2}{u^{2*+1}} + \left(\frac{|\mathcal{L}_g W_{t,\xi,k} + \sigma|_g^2 - |\mathcal{L}_g W_0 + \sigma|_g^2}{(B_{t,\xi,k} + u_0 + \varphi)^{2*+1}} \right)
+ \sum_{j=0}^n \chi_j^j(t, \xi, \varphi) (\triangle_g + h) Z_{j,k}.
$$

Done via a nonlinear fixed-point method in H^1 in the orthogonal of the kernel of the linearized equation at $B_{t,\xi,k}$ (spanned by the $Z_{j,k}$). Here $\mathcal{L}_g W_{t,\xi,k}$ is a coefficient.

It works since the red term comes with explicit pointwise estimates on it.
Sketch of the proof II: Semi-decoupling

Step 1: Construct a solution of:

\[
\triangle_g u + hu = fu^{2*}-1 + \frac{|\mathcal{L}_g W_0 + \sigma |^2_g + \pi^2}{u^{2*}+1} + \left(\frac{|\mathcal{L}_g W_{t,\xi,k} + \sigma |^2_g - |\mathcal{L}_g W_0 + \sigma |^2_g}{(B_{t,\xi,k} + u_0 + \varphi)^{2*}+1}\right) \\
+ \sum_{j=0}^n \lambda_j(t, \xi, \varphi) (\triangle_g + h) Z_{j,k}.
\]

Done via a nonlinear fixed-point method in \(H^1\) in the orthogonal of the kernel of the linearized equation at \(B_{t,\xi,k}\) (spanned by the \(Z_{j,k}\)). Here \(\mathcal{L}_g W_{t,\xi,k}\) is a coefficient.

It works since the red term comes with explicit pointwise estimates on it.

The solution is of the form \(B_{t,\xi,k} + u_0 + \psi_{t,\xi,k}\) for a new remainder \(\psi \in H^1(M)\), orthogonal to the \(Z_{j,k}\).
Sketch of the proof II: Semi-decoupling

Step 1: Construct a solution of:

\[
\nabla g u + hu = fu^{2^*-1} + \frac{\mathcal{L}_g W_0 + \sigma |g|^2 + \pi^2}{u^{2^*+1}} + \left(\frac{\mathcal{L}_g W_{t,\xi,k} + \sigma |g|^2 - \mathcal{L}_g W_0 + \sigma |g|^2}{(B_{t,\xi,k} + u_0 + \varphi)^{2^*+1}} \right) \\
+ \sum_{j=0}^{n} \chi_j(t, \xi, \varphi)(\nabla g + h) Z_{j,k}.
\]

Done via a nonlinear fixed-point method in H^1 in the orthogonal of the kernel of the linearized equation at $B_{t,\xi,k}$ (spanned by the $Z_{j,k}$). Here $\mathcal{L}_g W_{t,\xi,k}$ is a coefficient.

It works since the red term comes with explicit pointwise estimates on it.

The solution is of the form $B_{t,\xi,k} + u_0 + \psi_{t,\xi,k}$ for a new remainder $\psi \in H^1(M)$, orthogonal to the $Z_{j,k}$.

Goal: Get an (almost) solution of the system if $\psi = \varphi$.
Step 2: The goal is now to fix-point $\varphi \mapsto \psi$, in the set of C^0 functions satisfying:

$$|\varphi| \leq \varepsilon_k (B_{t,\xi,k} + u_0).$$

(0.4)
Step 2: The goal is now to fix-point \(\varphi \mapsto \psi \), in the set of \(C^0 \) functions satisfying:

\[
|\varphi| \leq \varepsilon_k (B_t, \xi, k + u_0).
\] (0.4)

Since \(\psi \) comes from an \(H^1 \) procedure it is not even clear that \(|\psi| \leq \varepsilon_k (B_t, \xi, k + u_0) \). We prove this by a priori analysis techniques.
Step 2: The goal is now to fix-point $\varphi \mapsto \psi$, in the set of C^0 functions satisfying:

$$|\varphi| \leq \varepsilon_k (B_{t,\xi,k} + u_0). \tag{0.4}$$

Since ψ comes from an H^1 procedure it is not even clear that $|\psi| \leq \varepsilon_k (B_{t,\xi,k} + u_0)$. We prove this by a priori analysis techniques.

This is again done in three steps:

Step a): Extend the a priori asymptotic techniques of the C^0-theory of Druet-Hebey-Robert to this scalar equation. Possible here since the red term comes with explicit (and suitable) pointwise bounds.
Step 2: The goal is now to fix-point $\varphi \mapsto \psi$, in the set of C^0 functions satisfying:

$$|\varphi| \leq \varepsilon_k \left(B_{t,\xi, k} + u_0 \right).$$ (0.4)

Since ψ comes from an H^1 procedure it is not even clear that $|\psi| \leq \varepsilon_k \left(B_{t,\xi, k} + u_0 \right)$. We prove this by a priori analysis techniques.

This is again done in three steps:

Step a): Extend the a priori asymptotic techniques of the C^0-theory of Druet-Hebey-Robert to this scalar equation. Possible here since the red term comes with explicit (and suitable) pointwise bounds.

This shows that

$$\psi = o \left(B_{t,\xi, k} + u_0 \right) \quad \text{in } C^0(M).$$
Sketch of the proof III: Fixed-point in C^0 2

Step b): Quantify the $o(1)$. This requires to obtain second-order estimates on ψ (again blow-up arguments).
Sketch of the proof III: Fixed-point in C^0 2

Step b): Quantify the $o(1)$. This requires to obtain second-order estimates on ψ (again blow-up arguments). They are for instance, at finite distance from ξ:

$$|\psi(x)| \lesssim \left[\mu_k^n + \mu_k \| \nabla f \|_{L^\infty} + \| h - c_n S_g \|_{L^\infty} \mu_k^2 \ln \left(\frac{\mu_k + d_g(\xi, x)}{\mu_k} \right) \right] + \left[h - c_n S_g \right]_{L^\infty} d_g(\xi, x)^2 + d_g(\xi, x)^4 \chi_{nlcf} B_{t, \xi, k}(x) + \left(\frac{\mu_k}{\mu_k + d_g(\xi, x)} \right)^2.$$
Sketch of the proof III: Fixed-point in C^0 2

Step b): Quantify the $o(1)$. This requires to obtain **second-order estimates** on ψ (again blow-up arguments). They are for instance, at finite distance from ξ:

$$
|\psi|(x) \lesssim \left[\mu_k^{\frac{n}{2}} + \mu_k \|\nabla f\|_{L^\infty} + \|h - c_n S_g\|_{L^\infty} \mu_k^2 \ln \left(\frac{\mu_k + d_g(\xi, x)}{\mu_k} \right) \\
+ \|h - c_n S_g\|_{L^\infty} d_g(\xi, x)^2 + d_g(\xi, x)^4 \mathbb{1}_{nlcf} \right] B_{t, \xi, k}(x) + \left(\frac{\mu_k}{\mu_k + d_g(\xi, x)} \right)^2.
$$

We also prove that these estimates are uniform in t, ξ and φ.
Step b): Quantify the \(o(1) \). This requires to obtain second-order estimates on \(\psi \) (again blow-up arguments). They are for instance, at finite distance from \(\xi \):

\[
|\psi|(x) \lesssim \left[\mu_k^2 + \mu_k \|\nabla f\|_{L^\infty} + \|h - c_n S_g\|_{L^\infty} \mu_k^2 \ln \left(\frac{\mu_k + d_g(\xi, x)}{\mu_k} \right) \right]
\]

\[
+ \|h - c_n S_g\|_{L^\infty} d_g(\xi, x)^2 + d_g(\xi, x)^4 1_{nlcf} \left[B_{t, \xi, k}(x) + \left(\frac{\mu_k}{\mu_k + d_g(\xi, x)} \right)^2 \right].
\]

We also prove that these estimates are uniform in \(t, \xi \) and \(\varphi \).

Step c): Choose a suitable \(\varepsilon_k \) (according to the red term). And then show that \(\varphi \mapsto \psi \) is a contraction. Relies on the second-order estimates.
Step 3: At the end of Step 2, after point-fixing the remainders, we have a solution
\((u_{t, \xi, k}, W_{t, \xi, k})\) of:

\[
\begin{cases}
\Delta_g u + hu = f u^{2* - 1} + \pi^2 + |\sigma + \mathcal{L}_g W|^2_{\bar{u}} + \sum_{j=0}^{n} \lambda_j^k(t, \xi) (\Delta_g + h) Z_{j,k,t,\xi}, \\
\overrightarrow{\Delta}_g W = u^{2*} X + Y,
\end{cases}
\]

where \(u_{t, \xi, k}\) writes as:

\[
\begin{aligned}
&u_{t, \xi, k} = B_{t, \xi, k} + u_0 + \varphi_{t, \xi, k}, \\
&|\varphi_{t, \xi, k}| \leq \varepsilon_k (B_{t, \xi, k} + u_0),
\end{aligned}
\]

and \(\varepsilon_k\) is known.
Step 3: At the end of Step 2, after point-fixing the remainders, we have a solution $(u_{t,\xi,k}, W_{t,\xi,k})$ of:

\[
\begin{align*}
\Delta_g u + hu &= f u^{2*-1} + \frac{\pi^2 + |\sigma + \mathcal{L}_g W|^2}{u^{2*+1}} + \sum_{j=0}^{n} \lambda_j^j(t, \xi) (\Delta_g + h) Z_{j,k,t,\xi}, \\
\overrightarrow{\Delta}_g W &= u^{2*} X + Y,
\end{align*}
\]

where $u_{t,\xi,k}$ writes as:

$$u_{t,\xi,k} = B_{t,\xi,k} + u_0 + \varphi_{t,\xi,k},$$

and $|\varphi_{t,\xi,k}| \leq \varepsilon_k(B_{t,\xi,k} + u_0)$, where ε_k is known.

To conclude: use the second-order estimates on $\varphi_{t,\xi,k}$ to obtain an asymptotic expansion of the $\lambda_{k,j}(t, \xi)$ in $C^0_{\text{loc}}(\mathbb{R}^{n+1})$ as $k \to +\infty$. And we are left to annihilate $(n + 1)$ functions from \mathbb{R}^{n+1} to \mathbb{R}.
Thank you for your attention.
Bonus: Explicit expressions of h and X.

The explicit expressions of h, f and X are the following:

$$f(x) \approx f_0$$

$$h(x) = \frac{n-2}{4(n-1)} S_g(x) + \sum_{k \geq 1} \tau_k H \left(\frac{1}{\beta_k} \left(\exp_{\xi_0} \right)^{-1}(x) \right),$$

$$X(x) = X_0(x) + \sum_{k \geq 1} \mu_k \frac{n-1}{2} Z \left(\left(\exp_{\xi_0} \right)^{-1}(x) \right),$$

where τ_k depends on μ_k and on the dimension and if (M, g) is locally conformally flat or not. Also, $\mu_k \ll \beta_k \ll 1$ is another scale parameter.

The function H has a strict local maximum at 0 and $|Z(0)|_{\xi} > 0$.
Bonus: Explicit expressions of h and X.

The explicit expressions of h, f and X are the following:

$$f(x) \approx f_0$$

$$h(x) = \frac{n - 2}{4(n - 1)} S_g(x) + \sum_{k \geq 1} \tau_k H \left(\frac{1}{\beta_k} (\exp_{\xi_0})^{-1}(x) \right),$$

$$X(x) = X_0(x) + \sum_{k \geq 1} \mu_k \frac{n-1}{2} Z \left((\exp_{\xi_0})^{-1}(x) \right),$$

where τ_k depends on μ_k and on the dimension and if (M, g) is locally conformally flat or not. Also, $\mu_k << \beta_k << 1$ is another scale parameter.

The function H has a strict local maximum at 0 and $|Z(0)|_{\xi} > 0$.

We did not just play around with the values of the parameters so that everything fits well in the end: the relations between the parameters are rigid and are given by the a priori pointwise stability analysis.