On the linear stability of Kerr black holes

Dietrich Häfner (Université Grenoble Alpes)
with Peter Hintz and András Vasy
(as well as L. Andersson and B. Whiting (mode analysis))

Seminar on Mathematical General Relativity
Sorbonne Université, November 17 2022
Einstein vacuum equation

We are interested in the global behavior of solutions of

$$\text{Ric}(g) = 0,$$

where g is a Lorentzian metric $(+−−−)$ on a 4-manifold M.

Here: study perturbations of special solutions.
Special solutions of $\text{Ric}(g) = 0$

1. Minkowski space.

$$M = \mathbb{R}_t \times \mathbb{R}^3,$$

$$g_{(0,0)} = dt^2 - dx^2 = dt^2 - dr^2 - r^2 g_{S^2}.$$

2. Schwarzschild black holes (mass $m > 0$).

$$M = \mathbb{R}_t \times (0, \infty)_r \times S^2,$$

$$g_{(m,0)} = \left(1 - \frac{2m}{r}\right) dt^2 - \left(1 - \frac{2m}{r}\right)^{-1} dr^2 - r^2 g_{S^2}$$

$$= g_{(0,0)} + O(r^{-1}).$$
Illustration of the Schwarzschild metric

\[b_0 = (m_0, 0), \quad g_{b_0} = \left(1 - \frac{2m_0}{r}\right) dt^2 - \left(1 - \frac{2m_0}{r}\right)^{-1} dr^2 - r^2 g_{S^2}. \]

Regge-Wheeler coordinate: \(r_* = r + 2m_0 \log(r - 2m_0) \).
\(t_* = t + r_* \) near \(\mathcal{H}^+ (r = 2m_0) \), \(t_* = t - r_* \) near \(\mathcal{I}^+ \).
\(M = \mathbb{R}_{t_*} \times X, \quad X = [r_-, \infty) \times S^2, \ r_\in (0, 2m_0). \)
Special solutions of $\text{Ric}(g) = 0$, continued

3. Kerr black holes

$(\text{mass } m > 0, \text{ angular momentum } a \in \mathbb{R}^3, a = |a|)$.

$$g_{(m,a)} = \frac{\Delta_b - a^2 \sin^2 \theta}{\varrho_b^2} dt^2 + \frac{4amr \sin^2 \theta}{\varrho_b^2} dtd\varphi$$

$$- \frac{(r^2 + a^2)^2 - \Delta_b a^2 \sin^2 \theta}{\varrho_b^2} \sin^2 \theta d\varphi^2 - \frac{r^2 + a^2 \cos^2 \theta}{\Delta_b} dr^2 - d\theta^2$$

$$= g_{(m,0)} + \mathcal{O}(r^{-2}),$$

$$\Delta_{(m,a)} = r^2 - 2mr + a^2, \quad \varrho_{(m,a)}^2 = r^2 + a^2 \cos^2 \theta.$$

Consider slowly rotating Kerr black holes:

$$b := (m, a) \approx b_0 = (m_0, 0) \text{ on } M = \mathbb{R}_{t_*} \times X.$$

g_b for such b is a smooth family of stationary metrics on M.

Kerr solution continued

- The Kerr metric is asymptotically Minkowskian.
- There exist trapped null geodesics. r-normally hyperbolic trapping for each r (stable property with respect to perturbations).

- There doesn’t exist any global timelike Killing vector field outside the black hole. Consequence: no conserved positive quantity for the wave equation.

Analogous solution for positive cosmological constant: De Sitter Kerr metric. The De Sitter Kerr metric is asymptotically De Sitter.

Only special solutions or real?
Initial value problem for $\text{Ric}(g) = 0$

Given on $\Sigma = t^{-1}(0) \subset M$:

- γ: Riemannian metric on Σ,
- k: symmetric 2-tensor on Σ.

Find:

- Lorentzian metric g on M, $\text{Ric}(g) = 0$,
- $\tau(g) := (-g|_{\Sigma}, \Pi^g_{\Sigma}) = (\gamma, k)$.

Necessary and sufficient for local existence: constraint equations on (γ, k). (Choquet-Bruhat '52.)

Example

For $(\gamma, k) = (\gamma_b, k_b) := \tau(g_b)$, the solution of the initial value problem is g_b.

Kerr black hole stability

Kerr:

Theorem (Klainerman, Szeftel, Giorgi, Shen '22)

The future globally hyperbolic development of a general, asymptotically flat, initial data set, sufficiently close (in a suitable topology) to a Kerr \((a_0, m_0) = b_0\) initial data set, for sufficiently small \(\frac{|a_0|}{m_0}\), has a complete future null infinity \(\mathcal{I}^+\) and converges in its causal past \(J^- (\mathcal{I}^+)\) to another nearby Kerr spacetime with parameters \(b_f\) close to the initial ones \(b_0\).

De Sitter Kerr:

Theorem (Hintz, Vasy '16)

In an equivalent situation for De Sitter Kerr there exists \(g\) such that

\[g = g_{bf} + \tilde{g}, \quad |\tilde{g}| \lesssim e^{-\beta t_*}, \quad \beta > 0. \]
\[\Sigma = t^{-1}(0) \]

\[\approx g_{b_0} \]

\[t_\ast = \infty \]

\[g = g_{b_f} \]
$\Lambda > 0$ versus $\Lambda = 0$.

Toy model of linearized Einstein equations around (De Sitter) Schwarzschild: wave equation on scalars:

$$(\partial_t^2 + P)u = 0.$$

- De Sitter Schwarzschild: P similar to a Laplace Beltrami operator on a manifold with two asymptotically hyperbolic ends: meromorphic extension of the resolvent on suitable spaces (Mazzeo-Melrose, Guillarmou).

- Schwarzschild: one asymptotically euclidean end: close to zero, resolvent only H^k down to the real axis (Bony-H., Guillarmou-Hassell, Wunsch-Vasy, Vasy,...)
Kerr stability: main issues

1. Find final black hole parameters \((m_f, a_f)\).
2. Diffeomorphism invariance: \(\text{Ric}(g) = 0 \Rightarrow \text{Ric}(\Phi^*g) = 0\).
 - gauge fixing;
 - track location of black hole in chosen gauge.
3. Because of the weak decay for the linearized problem, the precise structure of the nonlinearity is needed.

In Hintz–Vasy: use Newton-type iteration scheme; naively \(g_0 = g_{b_0}\),

\[
\begin{cases}
D_{g_0} \text{Ric}(h_0) = -\text{Ric}(g_0), \\
\text{initial data for } h_0 \text{ on } \Sigma,
\end{cases}
\Rightarrow g_1 = g_0 + h_0, \text{ etc.}
\]

Idea: read off improved guess of final black hole parameters and location/velocity from asymptotic behavior of \(h_0\).
Linear stability (modulo gauge)

Consider black hole parameters $b \approx b_0 = (m_0, 0)$.

Theorem (H.–Hintz–Vasy '19)

Let γ', k' be symmetric 2-tensors on $\Sigma = t^{-1}(0)$ satisfying the linearized constraint equations and

$|\gamma'| \lesssim r^{-1-\alpha}, |k'| \lesssim r^{-2-\alpha}, 0 < \alpha < 1$,

(and similar bounds for derivatives). Then there exists a symmetric 2-tensor h on M such that

$$D_{g_b} \text{Ric}(h) = 0, \quad D_{g_b} \tau(h) = (\gamma', k'),$$

which decays to a linearized Kerr metric,

$$h = g'_b(b') + \tilde{h}, \quad |\tilde{h}| \lesssim t_*^{-1-\alpha+}, \quad \left(g'_b(b') := \frac{d}{ds} g_{b+sb'} \bigg|_{s=0} \right).$$
Gauge fixing

Eliminate diffeomorphism invariance: impose extra condition on g:

$$W(g) = \Box_{g, gb} 1 \ (= 1\text{-form in } g, \partial g) = 0.$$

Then (‘DeTurck trick’):

$$\begin{cases}
\text{Ric}(g) = 0, \\
W(g) = 0, \quad \iff \quad \text{IVP for } P(g) := \text{Ric}(g) - \delta^*_g W(g) = 0.
\end{cases}$$

initial data

Linearized version:

$$\begin{cases}
D_{gb} \text{Ric}(h) = 0, \\
D_{gb} W(h) = 0, \quad \iff \quad \text{IVP for } D_{gb} P(h) \left(\approx \frac{1}{2} \Box_{gb} h \right) = 0.
\end{cases}$$

initial data
Main theorem

Let $L_b := D_{g_b} P$. Study $L_b h = 0$ with general initial data.

Theorem (H.–Hintz–Vasy ’19)
Let $\alpha \in (0, 1)$, and let $h_0, h_1 \in C^\infty(\Sigma; S^2 T^*_\Sigma M)$,

$$|h_0| \lesssim r^{-1-\alpha}, \quad |h_1| \lesssim r^{-2-\alpha}, \quad 0 < \alpha < 1$$

(and similar bounds for derivatives). Let

$$\begin{cases}
L_b h = 0, \\
(h|_{\Sigma}, \mathcal{L}_{\partial_t} h|_{\Sigma}) = (h_0, h_1).
\end{cases}$$

Then there exist $b' \in \mathbb{R} \times \mathbb{R}^3$ and $V \in$ fixed 8-dimensional space of vector fields on M such that

$$h = g'_b(b') + \mathcal{L}_V g_b + \tilde{h}, \quad |\tilde{h}| \lesssim t_*^{-1-\alpha+}.$$
Main theorem, continued

\[h = g'_b(b') + \mathcal{L}_V g_b + \tilde{h}, \quad |\tilde{h}| \lesssim t_*^{-1-\alpha^+}. \]

Here,

\[V \in \text{span}\{ \text{asymptotic translations: } \partial_{x^i} + \mathcal{O}(r^{-1}), \]
\[\text{asymptotic boosts: } t\partial_{x^i} - x^i\partial_t + \text{l.o.t.} \} \]
\[+ \text{two non geometric vector fields.} \]

Can read off:

- change of black hole parameters,
- movement of black hole in chosen gauge.

Remark: upon given up one order of decay one can choose \(V \) in a 6 dimensional space consisting only of the vector fields with clear geometric interpretation.
Prior work

- Andersson–Bäckdahl–Blue–Ma ’19: initial data with fast decay ($\alpha > 5/2$; then $b' = 0$)
- Dafermos–Holzegel–Rodnianski ’16: $b = b_0$
- Johnson, Hung–Keller–Wang ’16–’18: $b = b_0$
- Finster–Smoller ’16 (no decay rate).
Strategy of proof

Recast as

\[L_b h = f. \]

Work on spectral side:

\[h(t_*, x) = \frac{1}{2\pi} \int_{\text{Im } \sigma = C} e^{-i\sigma t_*} \hat{L}_b(\sigma)^{-1} \hat{f}(\sigma, x) \, d\sigma. \]

Shift contour to \(C = 0. \)

Uses/is related to: Melrose, Vasy–Zworski, Vasy; Wunsch–Zworski, Dyatlov, Hintz, Vasy, Guillarmou–Hassell, Bony–H.
1st step: Fredholm setting.

Uses Melrose ’93, radial point estimates Melrose ’94, Vasy ’13, non elliptic Fredholm framework Vasy ’13.

Proposition

Let $0 \leq a < m$. There exists $s_2 > 0$ with the following property.

1. Let $s > s_2$, $\ell < -1/2$, $s + \ell > -1/2$. Then the operators

$$\widehat{L}_b(\sigma) : \{ u \in \bar{H}^{s,\ell}_b(X) : \widehat{L}_g(\sigma) u \in \bar{H}^{s-1,\ell+2}_b(X) \} \rightarrow \bar{H}^{s-1,\ell+2}_b(X)$$

are Fredholm operators of index 0 for $\text{Im} \sigma \geq 0$, $\sigma \neq 0$.

2. If moreover $\ell \in (-3/2, -1/2)$, then

$$\widehat{L}_b(0) : \{ u \in \bar{H}^{s,\ell}_b(X) : \widehat{L}_g(0) u \in \bar{H}^{s-1,\ell+2}_b(X) \} \rightarrow \bar{H}^{s-1,\ell+2}_b(X)$$

is Fredholm of index 0.
2nd step. Mode analysis for the gauged fixed linearized Einstein equations

- $\widehat{L}_b(\sigma)$ invertible for $\text{Im}\sigma \geq 0$, $\sigma \neq 0$.
- Precise description of the kernel of $\widehat{L}_b(0)$, $\ell \in (-3/2, -1/2)$.

The mode analysis of $\widehat{L}_b(\sigma)$ follows from the mode analysis of
- ungauged linearized Einstein equations,
- the 1—form wave operator.

One also has to consider generalized mode solutions

$$h = \sum_{j=0}^{d} t^j h_j, \ h_j \in \overline{H}_{-1/2}^{-}, \ L_{b_0} h = 0.$$

There exist such solutions with $h_d \neq 0$, $d \geq 2$.
Mode stability without gauge

Theorem (Andersson-H-Whiting '22)

Let $0 \leq a < m$, $\sigma \in \mathbb{C}$, $\text{Im}\, \sigma \geq 0$, and suppose

$$\dot{g} = e^{-i\sigma t} h, \ h \in \tilde{H}_b^{\infty, \ell}(X; S^2 \tilde{sc} T^* X), \ \ell \in (-3/2, -1/2)$$

is an outgoing mode solution of the linearized Einstein equation

$$D_g\text{Ric}(\dot{g}) = 0.$$

If $\sigma = 0$, then there exist parameters $\dot{m} \in \mathbb{R}$, $\dot{a} \in \mathbb{R}^3$, and a 1-form $\omega \in \tilde{H}_b^{\infty, \ell-1}(X; \tilde{sc} T^* X)$, such that

$$\dot{g} - \dot{g}_{(m,a)}(\dot{m}, \dot{a}) = \delta^*_g \omega.$$

If $\sigma \neq 0$, then $\dot{g} = \delta^*_g \omega$ for a suitable outgoing 1-form ω.
Mode stability with gauge

Theorem (Andersson-H-Whiting ’22)

Let $0 < a < m$.

1. **For** $\text{Im} \, \sigma \geq 0$, $\sigma \neq 0$, the operator

 $$ \widehat{L}_{gb}(\sigma) : \{ u \in \tilde{H}_b^{s,\ell}(X; S^2 \, \text{sc} \, T^* X) : \widehat{L}_{gb}(\sigma)u \in \tilde{H}_b^{s-1,\ell+2}(X; S^2 \, \text{sc} \, T^* X) \} $$

 $$ \rightarrow \tilde{H}_b^{s-1,\ell+2}(X; S^2 \, \text{sc} \, T^* X) $$

 is invertible when $s > s_2$, $\ell < -\frac{1}{2}$, $s + \ell > -\frac{1}{2}$.

2. **If** moreover $\ell \in (-\frac{3}{2}, -\frac{1}{2})$, the **zero energy operator**

 $$ \widehat{L}_{gb}(0) : \{ u \in \tilde{H}_b^{s,\ell}(X; S^2 \, \text{sc} \, T^* X) : \widehat{L}_{gb}(0)u \in \tilde{H}_b^{s-1,\ell+2}(X; S^2 \, \text{sc} \, T^* X) \} $$

 $$ \rightarrow \tilde{H}_b^{s-1,\ell+2}(X; S^2 \, \text{sc} \, T^* X) $$

 has 7-dimensional kernel and cokernel.
Mode analysis with and without gauge

\[\sigma \neq 0 \]

\[L_b h = D_{gb} \text{Ric}(h) - \delta^*_{gb} D_{gb} W(h) = 0, \quad h = e^{-i\sigma t*} h_0, \quad (1) \]

\[h_0 = h_0(r, \omega) \] fulfills outgoing radiation condition. Apply linearized second Bianchi identity

\[\Box_{b,1}(D_{gb} W(h)) = 0. \]

We show absence of modes for the \(1 \)-form wave operator:

\[D_{gb} W(h) = 0. \quad (2) \]

Put into (1):

\[D_{gb} \text{Ric}(h) = 0. \]

\[\Rightarrow h \text{ is pure gauge } h = \delta^*_{gb} \omega. \] Putting this into (2) gives

\[\Box_{b,1} \omega = 0. \]

It follows \(\omega = 0. \)
Proof of mode stability

$\sigma = 0$.

- The Teukolsky scalars are zero (Whiting).
- **Gauge invariants.** For linearized perturbations of Kerr with vanishing Teukolsky scalars, the only non vanishing gauge invariants are $\mathbb{I}_\xi, \mathbb{I}_\zeta$ and they have in this case exactly the form they have for the linearized Plebanski-Demianski family.
- The set of gauge invariants \{Teukolsky scalars, linearized Ricci tensor, $\mathbb{I}_\xi, \mathbb{I}_\zeta$\} is complete (Aksteiner, Andersson, Bäckdahl, Khavkine, Whiting '19), it follows that up to gauge the perturbation is a Plebanski-Demianski line element.
- For all $\dot{a} \in \mathbb{R}^3$, there exists $\lambda(\dot{a}) \in \mathbb{R}$, a 1–form $\omega \in \bar{H}_b^{\infty,\ell-1}(X; \widetilde{S^{2\text{sc}} T^* X})$ and $g_0 \in C^\infty(\partial X; S^{2\text{sc}} T^{* \partial X} X)$ such that
 \[
 \dot{g} - \delta_{gb}^{* \omega} - \dot{g}_b(\lambda(\dot{a}), \dot{a}) - \frac{1}{r} g_0 \in O(r^{-2+}).
 \]
- Asymptotic behavior considerations eliminate the nut and acceleration parameters.
3rd step: Constraint dumping

Gauge freedom (Constraint dumping)
Gundlach et al ’05.
Zeroth order modification of δ^*_g:

$$\tilde{\delta}^*_g = \delta^*_g + E, \quad E\omega = \gamma(2c \otimes_s \omega - g^{-1}(c, \omega)g),$$

c being a stationary 1–form with compact spatial support.
Replacing δ^*_g by $\tilde{\delta}^*_g$ gives a modified gauge fixed linear operator.
For $\gamma \neq 0$ small no quadratically growing generalized modes exist.
All other important properties of L_b remain unchanged.
4th step: Regularity of the resolvent at high frequencies

Proposition

Let $\ell < -\frac{1}{2}$, and $s > \frac{5}{2}$, $s + \ell > -\frac{1}{2} + m$, $m \in \mathbb{N}$. Let $\sigma_0 > 0$. Then for $\text{Im} \sigma \geq 0$, $|\sigma| > \sigma_0$, $h = |\sigma|^{-1}$, the operator

$$\partial^m_{\sigma} \hat{L}_b(\sigma)^{-1}: \bar{H}^{s,\ell+1}_{b,h} \to h^{-m} \bar{H}^{s-m,\ell}_{b,h}$$

is uniformly bounded.

Main issue at high frequencies ($|\text{Re} \sigma| \to \infty$): Trapping, see Wunsch-Zworski '11, Dyatlov '16, Hintz '17.

Remark: the trapping is $r-$ normally hyperbolic for $0 \leq a < m$ (Dyatlov '15), therefore the above proposition should hold for $0 \leq a < m$.
5th step: Structure of the resolvent at low frequencies

▶ There exists $V \in \Psi^{-\infty}(X^o; S^2 T^* X^o)$,

$$\tilde{L}_b(\sigma) := \hat{L}_b(\sigma) + V : \mathcal{X}_{b^*}^{s,\ell}(\sigma) \to \bar{H}^{s-1,\ell+2}_b$$

is invertible for $\sigma \in \mathbb{C}$, $\text{Im} \sigma \geq 0$, b close to b_0.

▶ Kernel of $\hat{L}_b(0)$:

$$\mathcal{K}_b = \mathcal{K}_{b,s} \oplus \mathcal{K}_{b,v}, \quad \tilde{\mathcal{K}}_{b,o} = \tilde{L}_b(0)\mathcal{K}_{b,o}(0), \ o = s, v.$$

▶ There exists $\Pi_b^\perp : \bar{H}^{s-1,\ell+2}_b \to \bar{H}^{s-1,\ell+2}_b$ of rank 7 which depends continuously on b near b_0, and satisfies

$$\langle \Pi_b f, h^* \rangle = 0 \quad \forall \ h^* \in \mathcal{K}_b^*, \ \Pi_b = 1 - \Pi_b^\perp.$$

▶ Consider $\hat{L}_b(\sigma)\tilde{L}_b(\sigma)^{-1} : \bar{H}^{s-1,\ell+2}_b \to \bar{H}^{s-1,\ell+2}_b$.

Decomposition

domain: $\bar{H}^{s-1,\ell+2}_b \cong \tilde{\mathcal{K}}^\perp \oplus \tilde{\mathcal{K}}_{b,s} \oplus \tilde{\mathcal{K}}_{b,v}$,

target: $\bar{H}^{s-1,\ell+2}_b \cong \text{ran} \ \Pi_b \oplus \mathcal{R}_s^\perp \oplus \mathcal{R}_v^\perp$.
\[
\hat{L}_b(\sigma)\hat{L}_b(\sigma)^{-1} = \begin{pmatrix}
L_{00} & \sigma \tilde{L}_{01} & \sigma \tilde{L}_{02} \\
\sigma \tilde{L}_{10} & \sigma^2 \tilde{L}_{11} & \sigma^2 \tilde{L}_{12} \\
\sigma \tilde{L}_{20} & \sigma^2 \tilde{L}_{21} & \sigma \tilde{L}_{22}
\end{pmatrix}.
\]

We then obtain:

\[
\hat{L}_b(\sigma)^{-1} = \sigma^{-2} R_2 + \sigma^{-1} R_1 + L_b^-,
\]

where the range of R_1, R_2 is explicit (linearized Kerr, pure gauge).

Regularity of L_b^- (uses Vasy'19):

Proposition

Let $\ell \in (-\frac{3}{2}, -\frac{1}{2})$, $\epsilon \in (0, 1)$, $\ell + \epsilon \in (-\frac{1}{2}, \frac{1}{2})$, *and* $s - \epsilon > \frac{7}{2}$. *Then we have*

\[
L_b^- \in H^{3/2-\epsilon}((-\sigma_0, \sigma_0); \mathcal{L}(\bar{H}^{s-1,\ell+2}_b, \bar{H}^{s-\text{max}(\epsilon,1/2),\ell+\epsilon-1}_b))
\]

Main issue: behavior of the metric at infinity.
Thank you for your attention!