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en collaboration avec Tian-Wen LUO (Université Normale de Chine du Sud)
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Compressible Euler equations

Isentropic compressible Euler equations for polytropic gas:{
(∂t + v · ∇)ρ = −ρ∇ · v ,
(∂t + v · ∇)v = −ρ−1∇p,

⇔

{
(∂t + v · ∇)c = −γ−1

2 c∇ · v ,
(∂t + v · ∇)v = − 2

γ−1c∇c .

with p(ρ) = k0ρ
γ and γ ∈ (1, 3) and k0 > 0.

We focus on the sound waves by assuming curl(v) = 0 (irrotational).

I Sound speed c given by c =
√

dp
dρ = k

1
2

0 γ
1
2 ρ

γ−1
2 .

I On multi-dimensions, the directions count. We use the acoustical
metric (defined by the solution) to study sound waves:

g = −c2dt +
n∑

i=1

(dx i − v idt)2.

n = 2 in this talk.



Riemann’s paper on plane waves of gas dynamics

I Riemann’s 1860 paper: a series of new (physical)
concepts/discoveries

I shock/rarefaction waves, Riemann invariants, hodograph
transformations.

I Mechanism of shock formations
I Propagation of singularity

I Many other techniques used in modern (hyperbolic) PDEs.



Riemann problem

The study of the IVP with data consisting of two piecewise constant
states:

U(t = 0, x) =

{
Ul =

(
cl
vl

)
, x < 0;

Ur =
(
cr
vr

)
, x > 0.

2-D picture:

x1 = 0

(vr(0, x1, x2), cr(0, x1, x2))

x1

x2

x2 ∈ [0, 2π)(vl(0, x1, x2), cl(0, x1, x2))

Solved in terms of shocks and rarefaction waves . It has four types of
generic solutions/wave patterns.



Solutions to Riemann problem
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Centered rarefaction waves (1 family theorem)

Σ0
(v, c) = (v0, c0)x1 = 0

c = γ−1
γ+1

x
t
− γ−1

γ+1
v0 + 2

γ+1
c0

v = 2
γ+1

x
t

+ γ−1
γ+1

v0 − 2
γ+1

c0 (v, c) ≡ (v0, c0)

characteristic speed=v0 + c0

Σδ

Given Ur ≡ (v0, c0) on the right, i.e., x1 > 0. There is a unique family of
centered rarefaction connected to grey region on the left:{

c = γ−1
γ+1

x
t −

γ−1
γ+1 v0 + 2

γ+1c0,

v = 2
γ+1

x
t + γ−1

γ+1 v0 − 2
γ+1c0.

I The solution is continuous but singular.

I The density is decreasing when the ”fan” is openning.



The solution with two rarefaction waves (2 families
theorem)

‘Even when the start of the motion is perfectly continuous, shock
discontinuities may later arise automatically. Yet, under other conditions,
just the opposite may happen; initial discontinuities may be smoothed
out immediately’. Courant-Friedrichs, Supersonic flow and shock waves
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Given Ul (Ur ) on the left (right), we can connect them to get the fourth
wave pattern:
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Theory of Conservation Laws (1-D)

The theory is fairly complete:

I prove the well-posedness for initial data problem and existence of
global unique weak solutions

I formation of singularities

I the interactions of elementary waves such as shocks and rarefaction
waves.

Key technical tool: BV spaces (based on the understanding of Riemann’s
problem)



Higher dimensions

I The main technical obstacles: the breakdown of the BV space
approach.

I The only effective way may through the L2-based energy
method/Sobolev spaces.

I The characteristic hypersurfaces is much more complicated than
characteristic curves.

I New insights from general relativity to study characteristic
hypersurfaces: (Christodoulou-Klainerman’s proof of nonlinear
stability of Minkowski spacetime.

Very few works in higher dimensions!



A brief review on previous works: singularity formation

I Sideris, 1985. No description of singularity.

I Alinhac, 1991-1993. Formation of singularities for 2D compressible
Euler equations with radially symmetric assumptions.

I Alinhac, 1999. Formation of singularities quasilinear waves without
symmetry assumptions.

I In principle, can be extended to compressible Euler equations.
I Derivative losses and Nash–Moser iteration scheme.

I Christodoulou, 2007.

I stable shock formation for irrotational relativistic Euler.
I Detailed description the geometry of the boundary of the

maximal development of the data.



A brief review on previous works: singularity formations

I Works following the approach of Christodoulou

I Christodoulou-Miao, Non-relativistic Euler;
I Luk-Speck, with vorticity and entropy;
I Abbrescia-Speck, up to a portion of maximal development, see

also Shkoller-Vicol;
I Holzegel-Klainerman-Speck-Wong, Holzegel-Luk-Speck-Wong,

Miao-Yu, Miao, a series of works Speck, for quasilinear wave
equations;

I Q. Wang, Disconzi-Luo-Mazzone-Speck, LWP for Euler.

I Other approaches:

I Shkoller-Vicol, Buckmaster-Shkoller-Vicol, shock formation;
I Merle-Raphaël-Rodnianski-Szeftel, implosion.



A brief review on previous works: singularity propagation

I Shock front problem:

I Majda, no symmetry;
I Lisibach, shock reflection and interaction in plane symmetry;
I · · ·

I Shock development problem:

I H. Yin, Christodoulou-Lisibach, spherical symmetry;
I Buckmaster-Drivas-Shkoller-Vicol, azimuthal symmetry;
I Christodoulou, restricted problem without symmetry.



The open problem asked by Majda

I Discuss the rigorous existence of rarefaction fronts for the physical
equations

I Elucidate the differences in multi-D rarefaction phenomena when
compared with the 1-D case’.

According to him, the problem is much harder due to

I Surfaces bounding the rarefaction wave regions are characteristic:
lack of uniform stability condition.

I Linearized equations lose derivatives.

I Coupled with initial singularity further complicating the analysis.



A brief review on previous works: rarefaction waves

I Alinhac, local existence and uniqueness of multi-dimensional
rarefaction waves for a general hyperbolic system. He introduced
several innovative techniques:

I The celebrated ‘good unknown’ for the linearized equations.
I Use approximate characteristic coordinate system which blows

up the singularity.
I Nash–Moser scheme based on non-isotropic Littlewood–Paley

decomposition to overcome the derivative loss (also treat the
characteristic boundary).

I Finding an approximate ansatz for rarefaction waves up to
sufficiently large order near the singularity.

I Z.Wang-H.Yin, for steady supersonic flow around a sharp corner.

I Coulombel-Secchi, · · · , for other elementary wave patterns such as
contact discontinuities.



Main results (joint with Tian-Wen Luo)

I Ul is first connected U by a back rarefaction wave and then
connected to Ur by a front rarefaction wave. The initial
discontinuity is resolved by two families of rarefaction waves.
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The pictures are stable under small perturbations (in Hk -norms) in higher
dimensions without any symmetry assumptions.
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Strategy
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I Construct single family of rarefaction waves
I Construct data for approximate solution
I Derive a priori energy estimates for approximate solution
I Pass to limit to construct real solution

I Assemble to obtain the solution

I Uniqueness



The single family case

x1 = 0 (vr(0, x1, x2), cr(0, x1, x2))

t

t = 0

t = δ

t = 1

C0 D0
(vr, cr)

Σδ

We assume that
(
v
∣∣
t=0
− (v̊r , 0), c

∣∣
t=0
− c̊r

)
is small.

I Connect D0 by a rarefaction wave in a unique way on the left.

I Construct initial data ”at” the singularity.

I Admissible conditions at the ”corner”.
I The data should provide the rarefaction waves (not the smooth

extension).
I Use the last slice argument from Christodoulou-Klainerman.



The main estimates
I Use the acoustical coordinate (t, u, ϑ) for the rarefaction region

I Cu=level sets of u=characteristic hypersurfaces.

I κ = |∇u|−1 ≈ t=inverse density.

Σδ

C0

t
Ct

u

St,0

C0

St,u

Σt

Σδ Sδ,0

D0

We have (independent of δ!)

E6n|Σt + F6n|Cu 6 E6n|Σδ + F6n|C0 + error

The energies are defined for the Riemann invariants:

w =
1

2

( 2

γ − 1
c − v1

)
, w =

1

2

( 2

γ − 1
c + v1

)
through wave equations:

2gw = c−1(gµν∂µw∂νw + · · · )



Stability of Riemann problem 1

Construction of centered rarefaction waves:limiting argument for
δ = 2−k

Σ0

W

Kk−1

Kk

Obtain two families of centered rarefaction waves:
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Cu
Cu

C0

(ρr, vr)(ρl, vl)

x1 < 0 x2 < 0

Singularity



Stability of Riemann problem 2

At the singularity S∗ = (u, ϑ) ∈ [0, u∗]× [0, 2π] where ϑ = x2:
w(u, ϑ) = w r (0, ϑ)− 2

γ+1u,

w(u, ϑ) = wr (0, ϑ),

ψ2(u, ϑ) = −v2
r (0, ϑ).

S0,0H0 H0 S0,u

irrelevant

S0,u

On H0, we have w = w l ; on H0, we have w = wr .



Stability of Riemann problem 3
From H0, it determines a characteristic hypersurface H (not Cu in
general) which cuts the universal family of front rarefaction waves.

C0

Cuinner boundary H

Cu

physically irrelevant region

We then solve a smooth Goursat problem:
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Comparison with Alinhac’s results

I Use the Nash-Moser iteration scheme to save the loss of regularity
(even in the linear estimates).

Energy estimates in standard Sobolev space Hs with s > 6.

I Requires the compatibility conditions and solutions in different
regions must be iterated simultaneously to correct the boundaries.

No boundary condition on the left boundary u = u∗. Describe all
rarefaction waves which can be connected to C0.

I Loss of normal derivatives due to the the degeneration of weight
(even for 1D). Estimates do not degenerate on boundaries (flux).
Quantify the perturbations relative to 1D case in terms of the small
parameter ε (asymptotical stability).

We use wave equations associated a given Lorentzian metric.



Remarks on Christodoulou’s work on shock formations

I The degeneration of angular derivatives near shocks.

I Disparity in κ: Near-shock, κ→ 0. Angular part of the energy

≈
ˆ
D
µ| /∇ψ|2 but the error integrals have /∇ψ components

without κ factor.
I Error integrals can not be bounded by the energy integrals

(even on linear level).

I Christodoulou’s solution:

I Initially κ ≈ 1 and near shocks κ ≈ 0 ⇒ L(κ) < 0.

I Error integrals without factor µin the form

ˆ
D
L(κ) · | /∇ψ|2.

I The negative sign of L(κ) manifests a miraculous coercivity.

I The sign of L(κ) in the rarefaction wave region is positive. We need
new mechanism.



Remarks on Christodoulou’s work: control the second
fundamental form

I A direct integration along L would cause a loss of one derivative:

L
(
ZN(tr(χ))

)
= ZN+2(ψ) + · · · .

I Renormalization: ZN+2(ψ) = L
(
ZN+1(ψ′)

)
to derive

L
∥∥ZN(tr(χ))−

(
ZN+1(ψ′)

)∥∥
L2 =

L(κ)

κ

∥∥ZN(trχ)−
(
ZN+1(ψ′)

) ∥∥
L2 +· · · .

I For shock formation Lκ < 0, the blue term can be dropped.

I For rarefaction waves, L(κ) ≈ 1 ⇒ loss in t. (most challenging part)



Dealing with initial data at singularities

I Linear estimates: bound

ˆ
D
L(κ) · | /∇ψ|2.

I small-data-global-existence problem for nonlinear wave
equations:

E (t) 6 E (0) +

ˆ t

0

C0

τ
E (τ)dτ.

Gronwall’s inequality to show that E (t) = O (log(t)).

log(t)-loss but long time lifespan of size O(e
1
ε ).

I Rarefaction waves:

E (t) 6
( t
δ

)C0

E (δ).

When δ → 0, unless the initial energy E (δ) decays in the
correct way,



The decay hierarchy of the Riemann invariants

I Correct ansatz and Riemann invariants:{w ,w , v2} (can diagonalize
Euler equations)

I If ψ 6= w or k > 1, L(Z kψ) and X̂ (Z kψ) are of size ε2;
L(Z kψ) are of size t2ε2. (in L2-norms)

I The Lw is of size 1, generate most of the linear terms (main
enemies) in the energy estimates.

I (Believe) Unique energy ansatz (from last slice argument)

I New Gronwall and the use of flux F (t, u):

E (t, u) + F (t, u) 6 At2 + B

ˆ u

0

F (t, u′)du′ + C

ˆ t

δ

E (t ′, u)

t ′
dt ′.

We have
E (t, u) + F (t, u) 6 3AeBut2

provided eBu
∗
C 6 1.

I No degeneration at the boundaries of the rarefaction wave region.

I Flux also controls the geometry of rarefaction fronts.



Null structure

I The nonlinear term enjoys the null structure through the Riemann
invariants:{w ,w , v2}.

I The source terms are all in the covariant form gαβ∂αψ∂βψ
′.

I No terms of the type Lψ · Lψ′. We notice that there is no smallness
in Lw . Therefore, the worst contribution in the energy estimates
from the source terms are at least linear hence borderline terms.

I The flux term on the characteristic hypersurfaces Cu contains no
L-derivative components, these null structures allow us to deal with
most of the error terms.



Two null frames

Commutation 2g (ZNψ) = ZNχ+ · · · require the bound on χ:

L
∥∥ZN(χ)−

(
ZN+1(ψ′)

)∥∥
L2 =

L(κ)

κ

∥∥ZN(χ)−
(
ZN+1(ψ′)

) ∥∥
L2 + · · · .

I Covariant nature of the equation.

I Similar to the GCM construction in the stability of Kerr family
(Klainerma-Szeftel): the new null frame (non-integrable) {L̊, L̊, X̊}
explicitly written in ψ ∈ {w ,w , v2}, commutation only contributes
Z̊ k(ψ). (better chance to be controlled by Gronwall). Indeed,
X̊ = ∂2, L̊ = ∂t + (v1 + c)∂1 + v2∂2.

I Price to pay: worst possible error terms are related to (Z̊)πL̊L̊
(vanishing for the old frame).



A new coercivity

(γ + 1)

ˆ
D(t,w)

µ

µ̊︸︷︷︸
≈1

· L̊(w)

κ̊
|T̊ Z̊wψ|2 + · · ·

I Out of the scope of refined Gronwall.

I L̊(w) < 0 ⇒ This term can be ignored.

I This is due to the expansion nature of rarefaction waves and it
reflects the fact that along the transversal direction the density of
the gas is decreasing.



An extra vanishing

We encounter the following terms:

t−1 (X̊ )πL̊L̊ =
X̊ (v1 + c)

t
, t−1 (T̊ )πL̊L̊ = t−1(1+

γ + 1

2
T̊ (w)+

γ − 3

2
T̊ (w)).

I Energy ansatz suggests size O(t−1ε) and O(t−1). The t−1 factor is
out of reach for the energy estimates.

I In fact, these two terms are of size O(ε) and O(1). It comes from
the delicate choice of the initial data near singularity (last slice
argument). The geometry of initial rarefaction wave fronts must be
matched in an exact way on Σδ.

I For example, this forces T̊ (w) = −γ+1
2 .



Thank you very much!


