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The Stability Problem

Evolution of perturbed stationary solutions to the Einstein equations.

Let {ga} be a family of stationary solutions to Einstein equations (EE). Then,
{ga} is stable under small perturbations iff for any solution g to EE with initial
data “close” to that of ga, g t→∞−−−→ ga′ , for some a′ = a + δ.

Conjecture: Kerr(-Newmann) black holes are stable
Initial data, (Σ0, ḡ , k), for the Einstein equation which are sufficiently close to a
Kerr(-Newman) black hole evolve asymptotically in time to another member of
the Kerr(-Newman) family.
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Einstein–Maxwell Equations

Gravitational field interacts with electromagnetic radiation

Ric(g) = 2F · F − 1
2 |F |

2 g

dF = 0, div F = 0

Fµν : electromagnetic tensor (F = d A).

Reissner-Nordström spacetime (1917): |Q| ≤ M

gM,Q = −
(

1− 2M
r + Q2

r2

)
dt2 +

(
1− 2M

r + Q2

r2

)−1

dr2 + r2γS2
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Motivation

What about the linear stability of extremal RN spacetime, |Q| = M ?

(Physics)
About 70% of the stellar black holes are near-extremal (rotating very fast).
Observational signatures
Supersymmetry, holography and quantum gravity (Zero entropy)

(Math)

Degeneracy of the red-shift effect on the event horizon H+.
Trapping effect on degenerate horizons.
Horizon instabilities manifest for the scalar wave equation (Aretakis
Instability).
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ERN Geometry
Ingoing Eddington-Finkelstein coordinates: (υ, r , θ, ϕ)

gERN = −D(r)dυ2 + 2dυdr + r2 · γ, D(r) :=
(

1− M
r

)2

T := ∂
∂υ is normal to the event horizon H+, tangent to it’s null

geodesics/generators.
Y := ∂

∂r is transversal to H+
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Aretakis Instability

□gERN
ψ = 0 (1)

Conservation Laws along H+ (Stefanos Aretakis.2010 )
For all solutions ψℓ to (1), supported on the fixed angular frequency ℓ ∈ N, i.e.
/∆ψℓ = − ℓ(ℓ+1)

r2 ψℓ, there exists a quantity

Hℓ[ψℓ] = ∂ℓ+1
r ψℓ +

∑ℓ

i=0 βi · ∂ i
rψℓ

which is conserved along the null geodesics of H+. (Hℓ[ψ] ̸= 0, generically on H+.)

Decay: For all k ≤ ℓ, we have ∣∣∂k
r ψℓ

∣∣ τ→∞−−−−→ 0
Non-decay:

∂ℓ+1
r ψℓ

τ→∞−−−−→ Hℓ[ψℓ]

Blow-up: For all k ∈ N, we have
∂ℓ+1+k

r ψℓ ∼k Hℓ · τ k
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Linearized Einstein–Maxwell equations

Represent the Einstein–Maxwell equations with the non-linear operator

E [φ] = 0 (2)

Let φλ be a family of stationary solutions to (2).

δE [ψ]
δψ

∣∣∣
φλ

= 0

Study solutions ψ asymptotically in time.
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Teukolsky system of ± spin
For Schwarzschild (D.H.R., 2016)

□gSch
α+ c(r)∇Tα+ d(r)∇Yα+ V (r)α = 0

For Schwarzschild (D.H.R., 2016)

T (α) := □gSch
α+ c(r)∇Tα+ d(r)∇Yα+ V (r)α = 0

For Reissner–Nordström

(+2 spin)

T (α) = S1(f), f := − 1
2∇⊗̂

(F )
(1)

β + (F )ρ
(1)

χ̂

T (f) = S2(α, b), b := 2(F )ρ
(1)

β −3ρ (F )
(1)

β

(+1 spin) T (b) = S3(α, f)

Teukolsky system in RN. (Elena Giorgi, 2018)

T (α) = s1 ∇∂υ
f + w1 f

T (f) = s2 b + w2 α

T (b) = s3 /div f + w3 /divα

T (α) = s−1∇∂r f + w−1 f

T (f) = s−2b + w−2α

T (b) = s−3
/div f + w−3

/divα

Studying the above system directly is not possible∗
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Regge–Wheeler System

Transformation:
qF = r∇∂r

(
c1(r) · f

)
p = r∇∂r

(
c2(r) · b

)
□gERN

qF − A1(r) · qF = h1(r) /∇⊗̂p
□gERN

p − A2(r) · p = h2(r) /divqF

y
□gERN

ϕ+ V1(r)ϕ = − 1
2r
/∆ψ − 1

r3ψ

□gERN
ψ + V2(r)ψ = 8M2

r3 ϕ

y

Scalar Regge–Wheeler equations (RW)(
□gERN

− V (ℓ)

i (r)
)

Ψ(ℓ)

i = 0, ℓ ≥ i , i = 1, 2

ϕ = r2 (
/div /divqF , /curl /divqF )

ψ = r
(
/divp, /curlp

)

Ψ(ℓ)

i = ai(ℓ,M)ϕℓ + bi(ℓ,M)ψℓ

V (ℓ)

i (r) = O( 1
r3 ).
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Qualitative behavior of solutions to (RW)

Conservation Laws along H+. (A. 2022)

Let Ψ
(ℓ)
i , ℓ ≥ i , be a solution to (RW), i.e. □Ψ

(ℓ)
i − V

(ℓ)
i Ψ

(ℓ)
i = 0, then the quantities

Hℓ[Ψ1] = ∂ℓ+2
r Ψ

(ℓ)
1 +

∑ℓ+1
j=0 c j

1 · ∂ j
r Ψ

(ℓ)
1

Hℓ[Ψ2] = ∂ℓ
r Ψ

(ℓ)
2 +

∑ℓ−1
j=0 c j

2 · ∂ j
r Ψ

(ℓ)
2

are conserved along the null generators of H+.

Decay along H+:∣∣∣∂k
r Ψ

(ℓ)
1

∣∣∣ τ→∞−−−−→ 0, k < ℓ+ 2∣∣∣∂k
r Ψ

(ℓ)
2

∣∣∣ τ→∞−−−−→ 0, k < ℓ

Non-decay and Blow-up along H+:

∂
(ℓ+2)+k
r Ψ

(ℓ)
1 (τ) ∼k Hℓ[Ψ1] · τ k , k ∈ N

∂
ℓ+k
r Ψ

(ℓ)
2 (τ) ∼k Hℓ[Ψ2] · τ k , k ∈ N

Note,the most dominant along H+ is Ψ
(ℓ=2)
2 , with ∂2

r Ψ
(2)
2

τ→∞−−−−→ Hℓ=2 [Ψ2]
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∣∣∣ τ→∞−−−−→ 0, k < ℓ+ 2∣∣∣∂k
r Ψ

(ℓ)
2

∣∣∣ τ→∞−−−−→ 0, k < ℓ

Non-decay and Blow-up along H+:

∂
(ℓ+2)+k
r Ψ

(ℓ)
1 (τ) ∼k Hℓ[Ψ1] · τ k , k ∈ N

∂
ℓ+k
r Ψ

(ℓ)
2 (τ) ∼k Hℓ[Ψ2] · τ k , k ∈ N

Note,the most dominant along H+ is Ψ
(ℓ=2)
2 , with ∂2

r Ψ
(2)
2

τ→∞−−−−→ Hℓ=2 [Ψ2]
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Qualitative behavior of solutions to (RW)
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Moncrief’s formalism.

For ℓ = 2 odd parity perturbations the conserved quantities are

P+ ∼ Ψ(ℓ)

1 and P− ∼ Ψ(ℓ)

2
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Estimates for the Regge–Wheeler tensorial system

Using the estimates for Ψ(ℓ)

i , we control ϕℓ, ψℓ,

ϕℓ = c1 ·Ψ
(ℓ)

1 + c2 ·Ψ
(ℓ)

2 , ψℓ = d1 ·Ψ
(ℓ)

1 + d2 ·Ψ
(ℓ)

2

They both inherit the behavior of Ψ(ℓ)
2 asymptotically on H+.

Using standard elliptic identities we obtain
▶ Decay: ∥p∥S2

τ,M
≲M τ− 3

4 , ∥∇∂r p∥S2
τ,M

≲M τ− 1
4

▶ Non-Decay:
∥∥∇2

∂r p
∥∥

S2
τ,M

τ→∞−−−−→ c ∥H2[Ψ2]∥S2
τ,M

▶ Blow-up:
∥∥∇k

∂r p
∥∥

S2
τ,M

≳M ∥H2[Ψ2]∥S2
τ,M

· τ k−2, k ≥ 3.

where ∥ξ∥2
S2

v,r
:=

∫
S2

v,r
r2 sin θdθdϕ |ξ|2.

Similar estimates hold for qF ( Same order of instability ).
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The ± spin Teukolsky solutions

∥ξ∥Sτ
:=

∫
S2 r2 sin θdθdϕ |ξ|2, ∥ξ∥∞ (τ) := ∥ξ∥L∞(Sτ )

Theorem (A. 2022).
Let α, f, b and α, f, b be solutions to the Teukolsky system, then for generic initial data,
they all decay away from the event horizon H+, i.e. {r ≥ r0}, r0 > M.

In addition, along H+ we have
Positive spin:

Decay:
∥∥∥∇

≤2
Y f

∥∥∥
∞

(τ),
∥∥∥∇

≤2
Y b

∥∥∥
∞
(τ), and

∥∥∥∇
≤4
Y α

∥∥∥
∞

(τ)

Non-decay:
∥∥∇3

Y f
∥∥

Sτ
,

∥∥∇3
Y b

∥∥
Sτ

, and
∥∥∇5

Y α
∥∥

Sτ

Blow-up:
∥∥∇k+3

Y ξ
∥∥

Sτ
∼k τ k , and

∥∥∇k+5
Y α

∥∥
Sτ

∼k τ k , ξ ∈ {f, b} .

Negative spin:

Decay:
∥∥f

∥∥
∞

(τ), ∥b∥∞(τ)

Non-decay:
∥∥∇Y f

∥∥
Sτ

, ∥∇Y b∥Sτ
, and ∥α∥Sτ

Blow-up:
∥∥∇k+1

Y ξ
∥∥

Sτ
∼k τ k , and

∥∥∇k
Y α

∥∥
Sτ

∼k τ k , ξ ∈
{
f, b

}
.

Marios Antonios Apetroaie (Uni Münster) Linear (In)stability of ERN March 8, 2024 13 / 19



The ± spin Teukolsky solutions

∥ξ∥Sτ
:=

∫
S2 r2 sin θdθdϕ |ξ|2, ∥ξ∥∞ (τ) := ∥ξ∥L∞(Sτ )

Theorem (A. 2022).
Let α, f, b and α, f, b be solutions to the Teukolsky system, then for generic initial data,
they all decay away from the event horizon H+, i.e. {r ≥ r0}, r0 > M. In addition,
along H+ we have

Positive spin:

Decay:
∥∥∥∇

≤2
Y f

∥∥∥
∞

(τ),
∥∥∥∇

≤2
Y b

∥∥∥
∞
(τ), and

∥∥∥∇
≤4
Y α

∥∥∥
∞

(τ)

Non-decay:
∥∥∇3

Y f
∥∥

Sτ
,

∥∥∇3
Y b

∥∥
Sτ

, and
∥∥∇5

Y α
∥∥

Sτ

Blow-up:
∥∥∇k+3

Y ξ
∥∥

Sτ
∼k τ k , and

∥∥∇k+5
Y α

∥∥
Sτ

∼k τ k , ξ ∈ {f, b} .

Negative spin:

Decay:
∥∥f

∥∥
∞

(τ), ∥b∥∞(τ)

Non-decay:
∥∥∇Y f

∥∥
Sτ

, ∥∇Y b∥Sτ
, and ∥α∥Sτ

Blow-up:
∥∥∇k+1

Y ξ
∥∥

Sτ
∼k τ k , and

∥∥∇k
Y α

∥∥
Sτ

∼k τ k , ξ ∈
{
f, b

}
.

Marios Antonios Apetroaie (Uni Münster) Linear (In)stability of ERN March 8, 2024 13 / 19



The ± spin Teukolsky solutions
∥ξ∥Sτ

:=
∫
S2 r2 sin θdθdϕ |ξ|2, ∥ξ∥∞ (τ) := ∥ξ∥L∞(Sτ )

Theorem (A. 2022).
Let α, f, b and α, f, b be solutions to the Teukolsky system, then for generic initial data,
they all decay away from the event horizon H+, i.e. {r ≥ r0}, r0 > M. In addition,
along H+ we have

Positive spin:

Decay:
∥∥∥∇

≤2
Y f

∥∥∥
∞

(τ),
∥∥∥∇

≤2
Y b

∥∥∥
∞
(τ), and

∥∥∥∇
≤4
Y α

∥∥∥
∞

(τ)

Non-decay:
∥∥∇3

Y f
∥∥

Sτ
,

∥∥∇3
Y b

∥∥
Sτ

, and
∥∥∇5

Y α
∥∥

Sτ

Blow-up:
∥∥∇k+3

Y ξ
∥∥

Sτ
∼k τ k , and

∥∥∇k+5
Y α

∥∥
Sτ

∼k τ k , ξ ∈ {f, b} .

Negative spin:

Decay:
∥∥f

∥∥
∞

(τ), ∥b∥∞(τ)

Non-decay:
∥∥∇Y f

∥∥
Sτ

, ∥∇Y b∥Sτ
, and ∥α∥Sτ

Blow-up:
∥∥∇k+1

Y ξ
∥∥

Sτ
∼k τ k , and

∥∥∇k
Y α

∥∥
Sτ

∼k τ k , ξ ∈
{
f, b

}
.

Marios Antonios Apetroaie (Uni Münster) Linear (In)stability of ERN March 8, 2024 13 / 19



The ± spin Teukolsky solutions
∥ξ∥Sτ

:=
∫
S2 r2 sin θdθdϕ |ξ|2, ∥ξ∥∞ (τ) := ∥ξ∥L∞(Sτ )

Theorem (A. 2022).
Let α, f, b and α, f, b be solutions to the Teukolsky system, then for generic initial data,
they all decay away from the event horizon H+, i.e. {r ≥ r0}, r0 > M. In addition,
along H+ we have

Positive spin:

Decay:
∥∥∥∇

≤2
Y f

∥∥∥
∞

(τ),
∥∥∥∇

≤2
Y b

∥∥∥
∞
(τ), and

∥∥∥∇
≤4
Y α

∥∥∥
∞

(τ)

Non-decay:
∥∥∇3

Y f
∥∥

Sτ
,

∥∥∇3
Y b

∥∥
Sτ

, and
∥∥∇5

Y α
∥∥

Sτ

Blow-up:
∥∥∇k+3

Y ξ
∥∥

Sτ
∼k τ k , and

∥∥∇k+5
Y α

∥∥
Sτ

∼k τ k , ξ ∈ {f, b} .

Negative spin:

Decay:
∥∥f

∥∥
∞

(τ), ∥b∥∞(τ)

Non-decay:
∥∥∇Y f

∥∥
Sτ

, ∥∇Y b∥Sτ
, and ∥α∥Sτ

Blow-up:
∥∥∇k+1

Y ξ
∥∥

Sτ
∼k τ k , and

∥∥∇k
Y α

∥∥
Sτ

∼k τ k , ξ ∈
{
f, b

}
.

Marios Antonios Apetroaie (Uni Münster) Linear (In)stability of ERN March 8, 2024 13 / 19



Estimates for the +spin f, b Teukolsky solutions

Recall
(⋆) qF = r∇∂r (c1(r) · f)

Thus,
∇k+1

∂r
f = c̃1(r) · ∇k

∂r
qF + Lk−1[qF ] + k1(r) · f

Using (⋆) we show decay estimates for f. For higher order, we have
▶ Decay:

∥∥∥ /∇k
∂r f

∥∥∥
S2

τ,M

≲M
1

τ( 4−k
4 )k , 0 ≤ k ≤ 2.

▶ Non-Decay:
∥∥∥ /∇3

∂r f

∥∥∥
S2

τ,M

τ→∞−−−−→ c ∥Hℓ=2[Ψ2]∥S2
τ,M

▶ Blow-up:
∥∥∥ /∇k

∂r f

∥∥∥
S2

τ,M

≳k,M ∥Hℓ=2[Ψ2]∥S2
τ,M

· τ k−3, ∀ k ≥ 4.

Identical estimates hold for the gauge invariant quantity b as well.
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Estimates for the +2-spin α Teukolsky solution

Linearized Bianchi equation induces the relating transport equation

∇∂r (rα) = c1(r) · /∇⊗̂b + c2(r) · f

•
∥∥∥ /∇k

∂rα

∥∥∥
L∞(S2

τ,M )
≲M

1
τ
, 0 ≤ k ≤ 2.∥∥∥ /∇k+2

∂r α

∥∥∥
L∞(S2

τ,M )
≲M

1

τ( 4−k
4 )k , 1 ≤ k ≤ 2.

•
∥∥∥ /∇5

∂rα

∥∥∥
S2

τ,M

τ→∞−−−−→
(

c̃2 ∥Hℓ=2[Ψ2]∥2
S2

τ,M
+ c̃3 ∥Hℓ=3[Ψ2]∥2

S2
τ,M

) 1
2

•
∥∥∥ /∇k

∂rα
∥∥∥

S2
τ,M

≳k,M τ k−5, ∀ k ≥ 6.
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The negative spin case
The transformation equations leading to Regge–Wheeler solutions are

qF = 2r3∇∂υ
(f) + r∇∂r (r2Df),

p = 2r5∇∂υ
(b) + r∇∂r (r4Db).

Linearized Bianchi equation for α induces the relating equation
2∇∂υ

α+ D(r)∇∂rα+ D′(r)c(r) · α = c1(r) · ∇⊗̂b + c2(r) · f

Along the event horizon H+ we have

∇∂υ
(f) ∼ qF , ∇∂υ

(b) ∼ p
∇∂υ

α ∼ ∇⊗̂b + f

Idea: ∇Y∇T f ∼ ∇Y qF and ∇Y∇Tb ∼ ∇Y p. We use Teukolsky and arrive at

f ∼ b ∼ (∇Y qF +∇Y p)
Compare with the positive spin case

qF ∼ ∇Y (f)
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δΨ4 ←→ extreme curvature component, α
δΨ0 ←→ extreme curvature component, α

Similar numeric results have been produced by other authors including: Khanna,
Burko, Sabhawal, Zimmerman, Gralla, Casals, ...

+2 Spin: The same asymptotic behavior is realized along the horizon H+,
when compared to ERN.
-2 Spin: The linearized gravity in ERN exhibits more “unstable” behavior
than this of EK (axisymmetric-linear perturbations).

▶ In the non-axisymmetric case, the Hartle-Hawking Weyl scalar ψ4 seems to
blows up asymptotically along H+. (Z.G.C)
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